Newer
Older
import torch
from torch.utils.data import Dataset,DataLoader
from torch.autograd import Variable
import json
import random
import sys
import pickle
from tqdm import tqdm
from collections import deque
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import copy
sys.path.append("..")
from utils import text_standardize
USE_CUDA = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if USE_CUDA else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if USE_CUDA else torch.ByteTensor
# ==== Code for data loading =====
class GptDataset(Dataset):
"""Take a list of samples with form [[x,...],y,meta]
"""
# need 3 special tokens
# # as <ref start> 2
# $ as <speaker1> 3
# % as <speaker2> 4
# '<|endoftext|>' as <eos> 50256
def _split(self,x_y_meta):
x_all = []
y_all = []
meta_all = []
for x,y,meta in x_y_meta:
meta_all.append(meta)
x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
y_all.append(self.tokenizer.encode(text_standardize(y)))
return x_all,y_all,meta_all
def _filter(self,x_all,y_all,meta_all,filter_mode=None):
allowed_pattern = ['SR_only','CR_only','Smoking_only','Diet_only']
data = zip(x_all,y_all,meta_all)
if filter_mode not in allowed_pattern:
data_filt = data
if filter_mode=='SR_only':
data_filt = [x for x in data if x[2][2]=='SR']
if filter_mode=='CR_only':
data_filt = [x for x in data if x[2][2]=='CR']
if filter_mode=='Smoking_only':
data_filt = [x for x in data if x[2][1]=='Smoking cessation']
if filter_mode=='Diet_only':
data_filt = [x for x in data if x[2][1]=='Weight management']
x_filt,y_filt,meta_filt = zip(*data_filt)
return x_filt, y_filt, meta_filt
def __init__(self,x_y_meta,tokenizer,filter_mode=None,num_turns=5):
self.x_y_meta = x_y_meta
self.num_turns = num_turns
self.tokenizer = tokenizer
self.x_encoded,self.y_encoded,self.meta = self._split(x_y_meta)
self.x_encoded,self.y_encoded,self.meta = self._filter(self.x_encoded,self.y_encoded,self.meta,filter_mode)
self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
def __getitem__(self,index):
x = []
type_x = []
lm_x = []
is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation
for utt in self.x_encoded[index][-self.num_turns:]:
if is_speaker1: # add the prefix special token for each utterance
x+=[self.speaker1]
type_x += [self.speaker1]*(len(utt)+1)
else:
x+=[self.speaker2]
type_x += [self.speaker2]*(len(utt)+1)
x += utt
is_speaker1 = not is_speaker1
lm_x += [-1]*len(x) # all position for the input is masked for loss calculation
total_input_length = len(x)
x += [self.ref_start] + self.y_encoded[index] + [self.eos]
type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
lm_x += [-1] + self.y_encoded[index] + [self.eos]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
lm_x = torch.Tensor(lm_x)
x_len = x.shape[0]
return x,type_x,position_x,lm_x,total_input_length,self.meta[index]
def __len__(self):
return len(self.x_encoded)
class GptDataset_aug(Dataset):
def _split(self,x_y_meta):
x_all = []
y_all = []
meta_all = []
aug_all = []
for x,y,meta,aug in x_y_meta:
meta_all.append(meta)
x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
y_all.append(self.tokenizer.encode(text_standardize(y)))
aug_all.append(self.tokenizer.encode(text_standardize(aug)))
return x_all,y_all,meta_all,aug_all
def __init__(self,x_y_meta,tokenizer,num_turns=5):
self.x_y_meta = x_y_meta
self.num_turns = num_turns
self.tokenizer = tokenizer
self.x_encoded,self.y_encoded,self.meta,self.aug_encoded = self._split(x_y_meta)
self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
self.augment = 5
def __getitem__(self,index):
x = []
type_x = []
lm_x = []
x += [self.augment] + self.aug_encoded[index]
type_x += [self.augment] * len(x)
is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation
for utt in self.x_encoded[index][-self.num_turns:]:
if is_speaker1: # add the prefix special token for each utterance
x+=[self.speaker1]
type_x += [self.speaker1]*(len(utt)+1)
else:
x+=[self.speaker2]
type_x += [self.speaker2]*(len(utt)+1)
x += utt
is_speaker1 = not is_speaker1
lm_x += [-1]*len(x) # all position for the input is masked for loss calculation
total_input_length = len(x)
x += [self.ref_start] + self.y_encoded[index] + [self.eos]
type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
lm_x += [-1] + self.y_encoded[index] + [self.eos]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
lm_x = torch.Tensor(lm_x)
x_len = x.shape[0]
return x,type_x,position_x,lm_x,total_input_length,self.meta[index]
def __len__(self):
return len(self.x_encoded)
def collate_fn(data):
"""Creates mini-batch tensors from the list of tuples (src_seq, trg_seq).
We should build a custom collate_fn rather than using default collate_fn,
because merging sequences (including padding) is not supported in default.
Seqeuences are padded to the maximum length of mini-batch sequences (dynamic padding).
Args:
data: list of tuple (src_seq, trg_seq).
- src_seq: torch tensor of shape (?); variable length.
- trg_seq: torch tensor of shape (?); variable length.
Returns:
src_seqs: torch tensor of shape (batch_size, padded_length).
src_lengths: list of length (batch_size); valid length for each padded source sequence.
trg_seqs: torch tensor of shape (batch_size, padded_length).
trg_lengths: list of length (batch_size); valid length for each padded target sequence.
"""
def merge(sequences):
lengths = [len(seq) for seq in sequences]
padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end] = seq[:end]
return padded_seqs, lengths
def merge_matrix(matrices):
max_size = max([m.shape[-1] for m in attention_mask])
padded_matrices = torch.zeros(len(matrices), 1, max_size, max_size)
for i,m in enumerate(matrices):
m_size = m.shape[-1]
padded_matrices[i,:,:m_size,:m_size] = m
return padded_matrices
# sort a list by sequence length (descending order) to use pack_padded_sequence
data.sort(key=lambda x: len(x[0]), reverse=True)
# seperate source and target sequences
src_seqs, trg_seqs, pos_seqs,lm_seqs,total_input_length,attention_mask = zip(*data)
# merge sequences (from tuple of 1D tensor to 2D tensor)
src_seqs, src_lengths = merge(src_seqs)
trg_seqs, trg_lengths = merge(trg_seqs)
pos_seqs, pos_lengths = merge(pos_seqs)
lm_seqs, lm_lengths = merge(lm_seqs)
if type(attention_mask[0]) is not list:
attention_mask = merge_matrix(attention_mask)
if USE_CUDA:
src_seqs = src_seqs.cuda()
trg_seqs = trg_seqs.cuda()
pos_seqs = pos_seqs.cuda()
lm_seqs = lm_seqs.cuda()
return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),Variable(LongTensor(lm_seqs)), total_input_length, attention_mask
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
def collate_fn_nli(data):
"""Creates mini-batch tensors from the list of tuples (src_seq, trg_seq).
We should build a custom collate_fn rather than using default collate_fn,
because merging sequences (including padding) is not supported in default.
Seqeuences are padded to the maximum length of mini-batch sequences (dynamic padding).
Args:
data: list of tuple (src_seq, trg_seq).
- src_seq: torch tensor of shape (?); variable length.
- trg_seq: torch tensor of shape (?); variable length.
Returns:
src_seqs: torch tensor of shape (batch_size, padded_length).
src_lengths: list of length (batch_size); valid length for each padded source sequence.
trg_seqs: torch tensor of shape (batch_size, padded_length).
trg_lengths: list of length (batch_size); valid length for each padded target sequence.
"""
def merge(sequences):
lengths = [len(seq) for seq in sequences]
padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end] = seq[:end]
return padded_seqs, lengths
# sort a list by sequence length (descending order) to use pack_padded_sequence
data.sort(key=lambda x: len(x[0]), reverse=True)
# seperate source and target sequences
src_seqs, trg_seqs, pos_seqs,lm_seqs,label = zip(*data)
# merge sequences (from tuple of 1D tensor to 2D tensor)
src_seqs, src_lengths = merge(src_seqs)
trg_seqs, trg_lengths = merge(trg_seqs)
pos_seqs, pos_lengths = merge(pos_seqs)
# lm_seqs, lm_lengths = merge(lm_seqs)
label = torch.tensor(label)
if USE_CUDA:
src_seqs = src_seqs.cuda()
trg_seqs = trg_seqs.cuda()
pos_seqs = pos_seqs.cuda()
# lm_seqs = lm_seqs.cuda()
label = label.cuda()
return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),lm_seqs, label
def collate_fn_keyword(data):
def merge(sequences):
lengths = [len(seq) for seq in sequences]
padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end] = seq[:end]
return padded_seqs, lengths
# sort a list by sequence length (descending order) to use pack_padded_sequence
data.sort(key=lambda x: len(x[0]), reverse=True)
# seperate source and target sequences
src_seqs, trg_seqs, pos_seqs, lm_seqs, total_input_length, meta, keyword_x = zip(*data)
# merge sequences (from tuple of 1D tensor to 2D tensor)
src_seqs, src_lengths = merge(src_seqs)
trg_seqs, trg_lengths = merge(trg_seqs)
pos_seqs, pos_lengths = merge(pos_seqs)
lm_seqs, lm_lengths = merge(lm_seqs)
keyword_x, _ = merge(keyword_x)
if USE_CUDA:
src_seqs = src_seqs.cuda()
trg_seqs = trg_seqs.cuda()
pos_seqs = pos_seqs.cuda()
lm_seqs = lm_seqs.cuda()
keyword_x = keyword_x.cuda()
return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),Variable(LongTensor(lm_seqs)), total_input_length, meta,Variable(LongTensor(keyword_x))
class SnliDataset(Dataset):
"""Take a list of samples with form [[x,...],y,meta]
"""
# need 3 special tokens
# # as <ref start> 2
# $ as <speaker1> 3
# % as <speaker2> 4
# '<|endoftext|>' as <eos> 50256
def _split(self,data):
positive_label = set(['entailment'])
premise = []
hypothesis = []
label = []
for p,h,l in tqdm(data):
premise.append(self.tokenizer.encode(text_standardize(p)))
hypothesis.append(self.tokenizer.encode(text_standardize(h)))
if l in positive_label:
label.append(torch.tensor(1))
else:
label.append(torch.tensor(0))
return premise,hypothesis,label
def _filter(self,premise,hypothesis,label,filter_mode=None):
data = zip(premise,hypothesis,label)
if filter_mode == None:
data_filt = data
else:
data_filt = [x for x in data if x[2]!='-']
premise_filt,hypothesis_filt,label_filt = zip(*data_filt)
return premise_filt,hypothesis_filt,label_filt
def parse_snli(self,path=None):
with open(path) as f:
data = [json.loads(line) for line in f]
data_processed = [(line['sentence1'],line['sentence2'],line['gold_label']) for line in data]
return data_processed
def __init__(self,tokenizer,path='../data/snli_1.0/snli_1.0_train.jsonl',filter_mode=None,num_turns=5):
self.data = self.parse_snli(path)
self.tokenizer = tokenizer
self.premise_encoded,self.hypothesis_encoded,self.label = self._split(self.data)
self.premise_encoded,self.hypothesis_encoded,self.label = self._filter(self.premise_encoded,self.hypothesis_encoded,self.label,filter_mode)
self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
def __getitem__(self,index):
x = []
type_x = []
lm_x = []
x += [self.speaker1]
x += self.premise_encoded[index]
type_x += [self.speaker1]*(len(self.premise_encoded[index])+1) # the premise part
x += [self.ref_start]
x += self.hypothesis_encoded[index]
x += [self.eos]
type_x += [self.ref_start]*(len(self.hypothesis_encoded[index])+2) # the hypothesis part
label = self.label[index]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
return x,type_x,position_x,lm_x,label
def __len__(self):
return len(self.premise_encoded)
class GptDataset_full(Dataset):
def _split(self,x_y_meta):
x_all = []
y_all = []
meta_all = []
aug_all = []
keyword_all = []
for x, y, meta, aug, keyword in x_y_meta:
meta_all.append(meta)
# update for the new data format
aug = ''.join([a[1] for a in aug])
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
y_all.append(self.tokenizer.encode(text_standardize(y)))
aug_all.append(self.tokenizer.encode(text_standardize(aug)))
keyword_all.append(self.tokenizer.encode(text_standardize(keyword)))
return x_all,y_all,meta_all,aug_all, keyword_all
def _filt(self, length=1024):
data = zip(self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded)
data = [sample for sample in data if sum([len(sen) for sen in sample[0]][-self.args.num_turns:])+len(sample[1])+len(sample[3])+len(sample[4]) < 850]
self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded = zip(*data)
self.x_encoded = list(self.x_encoded)
self.y_encoded = list(self.y_encoded)
self.meta = list(self.meta)
self.aug_encoded = list(self.aug_encoded)
self.keyword_encoded = list(self.keyword_encoded)
def __init__(self,x_y_meta,tokenizer,args):
self.x_y_meta = x_y_meta
self.num_turns = args.num_turns
self.tokenizer = tokenizer
self.args = args
self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded = self._split(x_y_meta)
self._filt() # TODO: add back filt for mix-review
self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
self.augment = 5
if self.args.augment:
print("Using augment sentences.")
if self.args.keyword:
print("Using keywords.")
def __getitem__(self,index):
x = []
type_x = []
lm_x = []
if self.args.augment:
x += [self.augment] + self.aug_encoded[index]
if self.args.keyword:
x += [self.augment] + self.keyword_encoded[index]
type_x += [self.augment] * len(x)
is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation
for utt in self.x_encoded[index][-self.num_turns:]:
if is_speaker1: # add the prefix special token for each utterance
x+=[self.speaker1]
type_x += [self.speaker1]*(len(utt)+1)
else:
x+=[self.speaker2]
type_x += [self.speaker2]*(len(utt)+1)
x += utt
is_speaker1 = not is_speaker1
lm_x += [-100]*len(x) # all position for the input is masked for loss calculation
total_input_length = len(x)
x += [self.ref_start] + self.y_encoded[index] + [self.eos]
type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
lm_x += [-100] + self.y_encoded[index] + [self.eos]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
lm_x = torch.Tensor(lm_x)
x_len = x.shape[0]
return x,type_x,position_x,lm_x,total_input_length,self.meta[index]
def __len__(self):
return len(self.x_encoded)
def get_comet_aug_deque(self, comet_data, num_turns=5):
clause_dq = deque()
for comet_in, comet_out in comet_data:
if comet_out == "":
continue
loc = int(comet_in.split()[0])
if loc >= (10 - num_turns):
clause_dq.append((loc, comet_out))
return clause_dq
def __init__(self, x_y_meta, tokenizer, args):
self.data = x_y_meta
self.num_turns = args.num_turns
self.tokenizer = tokenizer
self.args = args
self.ref_start, self.speaker1, self.speaker2, self.eos = 2, 3, 4, 50256
self.augment = 5
if self.args.augment:
print("Using augment sentences.")
if self.args.keyword:
print("Using keywords.")
def __getitem__(self, index):
soft_position_x = []
dq = self.get_comet_aug_deque(self.data[index][3]) # the comet info
context = self.data[index][0]
response = self.data[index][1]
is_speaker1 = bool(self.args.num_turns % 2)
soft_loc = 0 # keep tract of the location of main sentences, point to the next token to be added
for i in range(10 - self.args.num_turns, 10):
utternace_encoded = self.tokenizer.encode(text_standardize(context[i]))
# add the prefix special token for each utterance
if is_speaker1:
x += [self.speaker1]
type_x += [self.speaker1] * (len(utternace_encoded) + 1)
else:
x += [self.speaker2]
type_x += [self.speaker2] * (len(utternace_encoded) + 1)
x += utternace_encoded
soft_position_x += list(range(soft_loc, soft_loc + len(utternace_encoded) + 1))
# add the aug, if it is the right place
while len(dq) != 0 and dq[0][0] == i:
comet_output = dq.popleft()[1]
comet_encoded = self.tokenizer.encode(text_standardize(comet_output))
x += [self.augment] + comet_encoded
type_x += [self.augment] * (len(comet_encoded) + 1)
soft_position_x += list(range(soft_loc, soft_loc + len(comet_encoded) + 1))
mask_info.append([utterance_start_loc, utterance_end_loc, len(comet_encoded)+1])
# update the pointer to the new seq end, add one for the delimiter token
soft_loc += len(utternace_encoded) + 1
lm_x += [-100] * len(x) # all position for the input is masked for loss calculation
response_encoded = self.tokenizer.encode(text_standardize(response))
x += [self.ref_start] + response_encoded + [self.eos]
type_x += [self.ref_start] * (len(response_encoded) + 2)
lm_x += [-100] + response_encoded + [self.eos]
soft_position_x += list(range(soft_loc, soft_loc + len(response_encoded) + 2))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
soft_position_x = torch.Tensor(soft_position_x)
lm_x = torch.Tensor(lm_x)
x_len = x.shape[0]
# process the mask
attention_mask = torch.tril(torch.ones(x_len, x_len))
for u_start, u_end, branch_len in mask_info:
attention_mask[u_end+branch_len+1: u_end+1:u_end+branch_len+1] = 0 # [1st token after branch: , 1st token in branch: last token in branch+1]
attention_mask = attention_mask.view(1, x_len, x_len)
return x, type_x, soft_position_x, lm_x, total_input_length, attention_mask
def __len__(self):
return len(self.data)
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
class GptDataset_KBERT(Dataset):
def __init__(self, data, tokenizer, args):
self.data = data
self.tokenizer = tokenizer
self.args = args
self.num_turns = args.num_turns
self.ref, self.speaker1, self.speaker2 = tokenizer.ref, tokenizer.speaker1, tokenizer.speaker2
self.eos = tokenizer.eos
self.augment = tokenizer.augment
if self.args.kbert_mask:
print("using kbert-style attention mask")
if self.args.kbert_position:
print("using kbert-style soft-postional encoding")
def __getitem__(self, index):
# preprare variables
x = []
type_x = []
lm_x = []
soft_position_x = []
attention_mask = []
# 0. unpack needed input info
context = data[index]['context']
srl_mask = data[index]['srl_mask']
comet_output = data[index]['comet'] # a list of dict or None
response = data[index]['response']
# 1. encode the response.
response_encoded = self.tokenizer.encode(text_standardize(response))
# 2. encode each utterance.
context_encoded = []
for i in range(10 - self.args.num_turns, 10):
context_encoded.append(self.tokenizer.encode(text_standardize(context[i])))
# 3. encode the comet output for each utterance.
comet_encoded = []
for i in range(len(comet_output)):
comet_text_i = ""
if comet_output[i] == None:
comet_encoded.append(None)
continue
for rel in comet_output[i]:
for candidate in comet_output[i][rel]['beams']:
if candidate != 'none':
comet_text_i += rel + " " + candidate + " "
break
comet_encoded.append(self.tokenizer.encode(text_standardize(comet_text_i)))
# 4. use the encoded seq to build the input and attention mask
is_speaker1 = bool(self.args.num_turns % 2)
soft_loc = 0
for i in range(self.args.num_turns):
# add an utterance. update x & type_x
if is_speaker1:
x += [self.speaker1]
type_x += [self.speaker1] * (len(context_encoded[i]) + 1)
else:
x += [self.speaker2]
type_x += [self.speaker2] * (len(context_encoded[i]) + 1)
x += context_encoded[i]
# update pos_x
# concate aug part after x. but the index is from the last related token
soft_position_x += list(range(soft_loc, soft_loc + (len(context_encoded[i]) + 1)))
last_related_token_index = len(srl_mask[i]) - 1 - srl_mask[i][::-1].index(1)
# add comet output
if comet_encoded[i] != None:
x += [self.augment] + comet_encoded[i]
type_x += [self.augment] * (len(comet_encoded[i]) + 1)
# +2 for the special token and the requirement of one-number larger than the utterance
soft_position_x += list(range(soft_loc + 2 + last_related_token_index,
soft_loc + 2 + last_related_token_index + (len(comet_encoded[i]) + 1)))
soft_loc += (len(context_encoded[i]) + 1)
is_speaker1 = not is_speaker1
lm_x += [-100] * len(x) # all position for the input is masked for loss calculation
total_input_length = len(x)
response_encoded = self.tokenizer.encode(text_standardize(response))
x += [self.ref] + response_encoded + [self.eos]
type_x += [self.ref] * (len(response_encoded) + 2)
lm_x += [-100] + response_encoded + [self.eos]
soft_position_x += list(range(soft_loc, soft_loc + len(response_encoded) + 2))
# build attention mask
attention_mask = torch.tril(torch.ones(len(x), len(x)))
aug_start = 0 # where the aug begin
utt_start = 0 # where the utt begin
for turn in range(self.args.num_turns):
aug_start += len(context_encoded[turn]) + 1
# iter through every token in the comet output
if comet_encoded[turn] != None:
for aug_token_pos in range(aug_start, aug_start + len(comet_encoded[turn]) + 1):
# set the attention related to the aug part to be all zero
attention_mask[aug_token_pos, :] = torch.zeros_like(attention_mask[aug_token_pos, :])
attention_mask[:, aug_token_pos] = torch.zeros_like(attention_mask[:, aug_token_pos])
# set attention on related token to be one
for normal_token_pos in range(len(context_encoded[turn])):
attention_mask[aug_token_pos, utt_start + normal_token_pos + 1] += srl_mask[turn][
normal_token_pos]
# set attention on previous aug tokens to be one
for previrous_aug_token_poc in range(aug_start, aug_token_pos + 1):
attention_mask[aug_token_pos, previrous_aug_token_poc] += 1
print(aug_start, utt_start)
aug_start += len(comet_encoded[turn]) + 1
utt_start += len(comet_encoded[turn]) + 1
utt_start += (len(context_encoded[turn]) + 1)
return x, type_x, soft_position_x, lm_x, total_input_length, attention_mask
def __len__(self):
return len(self.data)
def get_data(args, tokenizer, split_size):
"""
Return the data loaders needed for training and evaluation.
:param args: command line arguments.
:param tokenizer: the tokenizer used in preparing the data.
:param split_size: the portion of train, test, validation set.
:return data_loader: The data loader for the training set.
:return val_loader: The data loader for the validation set.
"""
# random.seed(args.seed)
# torch.random.manual_seed(args.seed)
# torch.cuda.manual_seed(args.seed)
# torch.manual_seed(args.seed)
if args.special_input:
print("Using mutated data.")
pickle_handler = open('../data_processed/' + args.special_input, 'rb')
x_y_meta = pickle.load(pickle_handler)
gpt_data = GptDataset(x_y_meta, tokenizer, args.output_dir, num_turns=args.num_turns)
elif not args.kbert:
pickle_handler = open('../data_processed/x_y_with_comet', 'rb') # TODO: change back to the old data.
x_y_meta = pickle.load(pickle_handler)
gpt_data = GptDataset_full(x_y_meta, tokenizer, args=args)
else:
print("Using KBERT data")
pickle_handler = open("../data_processed/x_y_with_comet",'rb')
x_y_meta = pickle.load(pickle_handler)
gpt_data = GptDataset_KBERT(x_y_meta, tokenizer, args=args)
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
print("Dataset initialized. There are {} samples.".format(len(gpt_data)))
test_size = int(len(gpt_data) * split_size['test'])
val_size = int(len(gpt_data) * split_size['val'])
gpt_train, gpt_test, gpt_val = torch.utils.data.random_split(gpt_data,
[len(gpt_data) - test_size - val_size, test_size,
val_size])
# import pdb;pdb.set_trace()
# with open('../../mi_data/train','wb') as f:
# pickle.dump(gpt_train, f)
# with open('../../mi_data/test','wb') as f:
# pickle.dump(gpt_test, f)
# with open('../../mi_data/val','wb') as f:
# pickle.dump(gpt_val, f)
if 'train_batch_size' not in args:
args.train_batch_size = 1
data_loader = DataLoader(dataset=gpt_train, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
collate_fn=collate_fn)
test_loader = DataLoader(dataset=gpt_test, batch_size=1, shuffle=False, drop_last=False, collate_fn=collate_fn)
val_loader = DataLoader(dataset=gpt_val, batch_size=1, shuffle=False, drop_last=False, collate_fn=collate_fn)
return data_loader, test_loader, val_loader
def prepare_mix_review(args, tokenizer):
print("Preparing Alexander dataset")
pickle_handler = open('../data_processed/data_alex', 'rb')
data = pickle.load(pickle_handler)
gpt_alex = GptDataset_full(data, tokenizer, args=args)
print("Alexander dataset prepared. Has {} samples".format(len(gpt_alex)))
return gpt_alex
def update_mix_review(gpt_train, gpt_alex, epoch, args, mix_ratio=4, mix_decay=0.7, collate_fn=collate_fn):
mix_amount = int(mix_ratio*(0.7**epoch)*len(gpt_train))
gpt_alex_active,_ = torch.utils.data.random_split(gpt_alex, [mix_amount, len(gpt_alex)-mix_amount])
data_loader = DataLoader(dataset=gpt_train+gpt_alex_active, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
collate_fn=collate_fn)