Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
import torch
from torch.utils.data import Dataset,DataLoader
from torch.autograd import Variable
import json
import random
import sys
import pickle
from tqdm import tqdm
import copy
sys.path.append("..")
from utils import text_standardize
USE_CUDA = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if USE_CUDA else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if USE_CUDA else torch.ByteTensor
# ==== Code for data loading =====
class GptDataset(Dataset):
"""Take a list of samples with form [[x,...],y,meta]
"""
# need 3 special tokens
# # as <ref start> 2
# $ as <speaker1> 3
# % as <speaker2> 4
# '<|endoftext|>' as <eos> 50256
def _split(self,x_y_meta):
x_all = []
y_all = []
meta_all = []
for x,y,meta in x_y_meta:
meta_all.append(meta)
x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
y_all.append(self.tokenizer.encode(text_standardize(y)))
return x_all,y_all,meta_all
def _filter(self,x_all,y_all,meta_all,filter_mode=None):
allowed_pattern = ['SR_only','CR_only','Smoking_only','Diet_only']
data = zip(x_all,y_all,meta_all)
if filter_mode not in allowed_pattern:
data_filt = data
if filter_mode=='SR_only':
data_filt = [x for x in data if x[2][2]=='SR']
if filter_mode=='CR_only':
data_filt = [x for x in data if x[2][2]=='CR']
if filter_mode=='Smoking_only':
data_filt = [x for x in data if x[2][1]=='Smoking cessation']
if filter_mode=='Diet_only':
data_filt = [x for x in data if x[2][1]=='Weight management']
x_filt,y_filt,meta_filt = zip(*data_filt)
return x_filt, y_filt, meta_filt
def __init__(self,x_y_meta,tokenizer,filter_mode=None,num_turns=5):
self.x_y_meta = x_y_meta
self.num_turns = num_turns
self.tokenizer = tokenizer
self.x_encoded,self.y_encoded,self.meta = self._split(x_y_meta)
self.x_encoded,self.y_encoded,self.meta = self._filter(self.x_encoded,self.y_encoded,self.meta,filter_mode)
self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
def __getitem__(self,index):
x = []
type_x = []
lm_x = []
is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation
for utt in self.x_encoded[index][-self.num_turns:]:
if is_speaker1: # add the prefix special token for each utterance
x+=[self.speaker1]
type_x += [self.speaker1]*(len(utt)+1)
else:
x+=[self.speaker2]
type_x += [self.speaker2]*(len(utt)+1)
x += utt
is_speaker1 = not is_speaker1
lm_x += [-1]*len(x) # all position for the input is masked for loss calculation
total_input_length = len(x)
x += [self.ref_start] + self.y_encoded[index] + [self.eos]
type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
lm_x += [-1] + self.y_encoded[index] + [self.eos]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
lm_x = torch.Tensor(lm_x)
x_len = x.shape[0]
return x,type_x,position_x,lm_x,total_input_length,self.meta[index]
def __len__(self):
return len(self.x_encoded)
# class GptDataset_keyword(Dataset):
# def _split(self,x_y_meta):
# x_all = []
# y_all = []
# meta_all = []
# aug_all = []
# for x,y,meta,aug in x_y_meta:
# meta_all.append(meta)
# x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
# y_all.append(self.tokenizer.encode(text_standardize(y)))
# key_word.append(self.tokenizer.encode(text_standardize(aug)))
# return x_all,y_all,meta_all,aug_all
# def __init__(self,x_y_meta,tokenizer,num_turns=5):
# self.x_y_meta = x_y_meta
# self.num_turns = num_turns
# self.tokenizer = tokenizer
# self.x_encoded,self.y_encoded,self.meta,self.aug_encoded = self._split(x_y_meta)
# self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
# self.augment = 5
# self.keyword = 10 # '+'
class GptDataset_aug(Dataset):
def _split(self,x_y_meta):
x_all = []
y_all = []
meta_all = []
aug_all = []
for x,y,meta,aug in x_y_meta:
meta_all.append(meta)
x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
y_all.append(self.tokenizer.encode(text_standardize(y)))
aug_all.append(self.tokenizer.encode(text_standardize(aug)))
return x_all,y_all,meta_all,aug_all
def __init__(self,x_y_meta,tokenizer,num_turns=5):
self.x_y_meta = x_y_meta
self.num_turns = num_turns
self.tokenizer = tokenizer
self.x_encoded,self.y_encoded,self.meta,self.aug_encoded = self._split(x_y_meta)
self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
self.augment = 5
def __getitem__(self,index):
x = []
type_x = []
lm_x = []
x += [self.augment] + self.aug_encoded[index]
type_x += [self.augment] * len(x)
is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation
for utt in self.x_encoded[index][-self.num_turns:]:
if is_speaker1: # add the prefix special token for each utterance
x+=[self.speaker1]
type_x += [self.speaker1]*(len(utt)+1)
else:
x+=[self.speaker2]
type_x += [self.speaker2]*(len(utt)+1)
x += utt
is_speaker1 = not is_speaker1
lm_x += [-1]*len(x) # all position for the input is masked for loss calculation
total_input_length = len(x)
x += [self.ref_start] + self.y_encoded[index] + [self.eos]
type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
lm_x += [-1] + self.y_encoded[index] + [self.eos]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
lm_x = torch.Tensor(lm_x)
x_len = x.shape[0]
return x,type_x,position_x,lm_x,total_input_length,self.meta[index]
def __len__(self):
return len(self.x_encoded)
def collate_fn(data):
"""Creates mini-batch tensors from the list of tuples (src_seq, trg_seq).
We should build a custom collate_fn rather than using default collate_fn,
because merging sequences (including padding) is not supported in default.
Seqeuences are padded to the maximum length of mini-batch sequences (dynamic padding).
Args:
data: list of tuple (src_seq, trg_seq).
- src_seq: torch tensor of shape (?); variable length.
- trg_seq: torch tensor of shape (?); variable length.
Returns:
src_seqs: torch tensor of shape (batch_size, padded_length).
src_lengths: list of length (batch_size); valid length for each padded source sequence.
trg_seqs: torch tensor of shape (batch_size, padded_length).
trg_lengths: list of length (batch_size); valid length for each padded target sequence.
"""
def merge(sequences):
lengths = [len(seq) for seq in sequences]
padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end] = seq[:end]
return padded_seqs, lengths
# sort a list by sequence length (descending order) to use pack_padded_sequence
data.sort(key=lambda x: len(x[0]), reverse=True)
# seperate source and target sequences
src_seqs, trg_seqs, pos_seqs,lm_seqs,total_input_length,meta = zip(*data)
# merge sequences (from tuple of 1D tensor to 2D tensor)
src_seqs, src_lengths = merge(src_seqs)
trg_seqs, trg_lengths = merge(trg_seqs)
pos_seqs, pos_lengths = merge(pos_seqs)
lm_seqs, lm_lengths = merge(lm_seqs)
if USE_CUDA:
src_seqs = src_seqs.cuda()
trg_seqs = trg_seqs.cuda()
pos_seqs = pos_seqs.cuda()
lm_seqs = lm_seqs.cuda()
return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),Variable(LongTensor(lm_seqs)), total_input_length, meta
def collate_fn_nli(data):
"""Creates mini-batch tensors from the list of tuples (src_seq, trg_seq).
We should build a custom collate_fn rather than using default collate_fn,
because merging sequences (including padding) is not supported in default.
Seqeuences are padded to the maximum length of mini-batch sequences (dynamic padding).
Args:
data: list of tuple (src_seq, trg_seq).
- src_seq: torch tensor of shape (?); variable length.
- trg_seq: torch tensor of shape (?); variable length.
Returns:
src_seqs: torch tensor of shape (batch_size, padded_length).
src_lengths: list of length (batch_size); valid length for each padded source sequence.
trg_seqs: torch tensor of shape (batch_size, padded_length).
trg_lengths: list of length (batch_size); valid length for each padded target sequence.
"""
def merge(sequences):
lengths = [len(seq) for seq in sequences]
padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end] = seq[:end]
return padded_seqs, lengths
# sort a list by sequence length (descending order) to use pack_padded_sequence
data.sort(key=lambda x: len(x[0]), reverse=True)
# seperate source and target sequences
src_seqs, trg_seqs, pos_seqs,lm_seqs,label = zip(*data)
# merge sequences (from tuple of 1D tensor to 2D tensor)
src_seqs, src_lengths = merge(src_seqs)
trg_seqs, trg_lengths = merge(trg_seqs)
pos_seqs, pos_lengths = merge(pos_seqs)
# lm_seqs, lm_lengths = merge(lm_seqs)
label = torch.tensor(label)
if USE_CUDA:
src_seqs = src_seqs.cuda()
trg_seqs = trg_seqs.cuda()
pos_seqs = pos_seqs.cuda()
# lm_seqs = lm_seqs.cuda()
label = label.cuda()
return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),lm_seqs, label
def collate_fn_keyword(data):
def merge(sequences):
lengths = [len(seq) for seq in sequences]
padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
for i, seq in enumerate(sequences):
end = lengths[i]
padded_seqs[i, :end] = seq[:end]
return padded_seqs, lengths
# sort a list by sequence length (descending order) to use pack_padded_sequence
data.sort(key=lambda x: len(x[0]), reverse=True)
# seperate source and target sequences
src_seqs, trg_seqs, pos_seqs, lm_seqs, total_input_length, meta, keyword_x = zip(*data)
# merge sequences (from tuple of 1D tensor to 2D tensor)
src_seqs, src_lengths = merge(src_seqs)
trg_seqs, trg_lengths = merge(trg_seqs)
pos_seqs, pos_lengths = merge(pos_seqs)
lm_seqs, lm_lengths = merge(lm_seqs)
keyword_x, _ = merge(keyword_x)
if USE_CUDA:
src_seqs = src_seqs.cuda()
trg_seqs = trg_seqs.cuda()
pos_seqs = pos_seqs.cuda()
lm_seqs = lm_seqs.cuda()
keyword_x = keyword_x.cuda()
return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),Variable(LongTensor(lm_seqs)), total_input_length, meta,Variable(LongTensor(keyword_x))
class GptDataset_keyword(Dataset):
def _split(self, x_y_meta):
x_all = []
y_all = []
meta_all = []
keyword_all = []
for x, y, meta, keyword in x_y_meta:
meta_all.append(meta)
x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
y_all.append(self.tokenizer.encode(text_standardize(y)))
keyword_all.append(self.tokenizer.encode(text_standardize(keyword)))
return x_all, y_all, meta_all, keyword_all
def __init__(self, x_y_meta, tokenizer, num_turns=5):
self.x_y_meta = x_y_meta
self.num_turns = num_turns
self.tokenizer = tokenizer
self.x_encoded, self.y_encoded, self.meta, self.keyword = self._split(x_y_meta)
self.ref_start, self.speaker1, self.speaker2, self.eos = 2, 3, 4, 50256
def __getitem__(self, index):
x = []
type_x = []
lm_x = []
is_speaker1 = bool(len(self.x_encoded[index]) % 2) # which speaker start the conversation
for utt in self.x_encoded[index]:
if is_speaker1: # add the prefix special token for each utterance
x += [self.speaker1]
type_x += [self.speaker1] * (len(utt) + 1)
else:
x += [self.speaker2]
type_x += [self.speaker2] * (len(utt) + 1)
x += utt
is_speaker1 = not is_speaker1
lm_x += [-1] * len(x) # all position for the input is masked for loss calculation
total_input_length = len(x)
x += [self.ref_start] + self.y_encoded[index] + [self.eos]
type_x += [self.ref_start] * (len(self.y_encoded[index]) + 2)
lm_x += [-1] + self.y_encoded[index] + [self.eos]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
lm_x = torch.Tensor(lm_x)
x_len = x.shape[0]
keyword_x = [] + self.keyword[index]
keyword_x = torch.Tensor(keyword_x)
return x, type_x, position_x, lm_x, total_input_length, self.meta[index], keyword_x
def __len__(self):
return len(self.x_encoded)
# class GptDataset_nli(GptDataset):
# def __init__(self, x_y_meta, tokenizer, filter_mode=None,num_turns=5,augment=True):
# super(GptDataset_nli, self).__init__(x_y_meta,tokenizer, num_turns=num_turns)
# self.augment = augment
# self.pos_len = len(self.x_encoded)
# def __len__(self):
# if self.augment:
# return 2 * len(self.x_encoded)
# else:
# return len(self.x_encoded)
# def __getitem__(self,index):
# # client utterances - premise -speaker1
# # response - hypothesis - ref_start
# true_index = index
# if index >= self.pos_len:
# index = index - self.pos_len
# x = []
# type_x = []
# lm_x = []
# is_speaker1 = bool(len(self.x_encoded[index])%2) # which speaker start the conversation
# x+=[self.speaker1]
# type_x += [self.speaker1]
# for utt in self.x_encoded[index][-self.num_turns:]:
# if is_speaker1: # add the prefix special token for each utterance
# type_x += [self.speaker1]*(len(utt))
# x += utt
# # else:
# # x+=[self.speaker2]
# # type_x += [self.speaker2]*(len(utt)+1)
# # x += utt
# is_speaker1 = not is_speaker1
# total_input_length = len(x)
# if true_index >= self.pos_len:
# rand_index = random.randint(0,self.pos_len-1)
# x += [self.ref_start] + self.y_encoded[rand_index] + [self.eos]
# type_x += [self.ref_start]*(len(self.y_encoded[rand_index])+2)
# else:
# x += [self.ref_start] + self.y_encoded[index] + [self.eos]
# type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
# position_x = list(range(len(x)))
# x = torch.Tensor(x)
# type_x = torch.Tensor(type_x)
# position_x = torch.Tensor(position_x)
# x_len = x.shape[0]
# label = torch.tensor(0) if true_index>self.pos_len else torch.tensor(1)
# return x,type_x,position_x,lm_x, label
class SnliDataset(Dataset):
"""Take a list of samples with form [[x,...],y,meta]
"""
# need 3 special tokens
# # as <ref start> 2
# $ as <speaker1> 3
# % as <speaker2> 4
# '<|endoftext|>' as <eos> 50256
def _split(self,data):
positive_label = set(['entailment'])
premise = []
hypothesis = []
label = []
for p,h,l in tqdm(data):
premise.append(self.tokenizer.encode(text_standardize(p)))
hypothesis.append(self.tokenizer.encode(text_standardize(h)))
if l in positive_label:
label.append(torch.tensor(1))
else:
label.append(torch.tensor(0))
return premise,hypothesis,label
def _filter(self,premise,hypothesis,label,filter_mode=None):
data = zip(premise,hypothesis,label)
if filter_mode == None:
data_filt = data
else:
data_filt = [x for x in data if x[2]!='-']
premise_filt,hypothesis_filt,label_filt = zip(*data_filt)
return premise_filt,hypothesis_filt,label_filt
def parse_snli(self,path=None):
with open(path) as f:
data = [json.loads(line) for line in f]
data_processed = [(line['sentence1'],line['sentence2'],line['gold_label']) for line in data]
return data_processed
def __init__(self,tokenizer,path='../data/snli_1.0/snli_1.0_train.jsonl',filter_mode=None,num_turns=5):
self.data = self.parse_snli(path)
self.tokenizer = tokenizer
self.premise_encoded,self.hypothesis_encoded,self.label = self._split(self.data)
self.premise_encoded,self.hypothesis_encoded,self.label = self._filter(self.premise_encoded,self.hypothesis_encoded,self.label,filter_mode)
self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
def __getitem__(self,index):
x = []
type_x = []
lm_x = []
x += [self.speaker1]
x += self.premise_encoded[index]
type_x += [self.speaker1]*(len(self.premise_encoded[index])+1) # the premise part
x += [self.ref_start]
x += self.hypothesis_encoded[index]
x += [self.eos]
type_x += [self.ref_start]*(len(self.hypothesis_encoded[index])+2) # the hypothesis part
label = self.label[index]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
return x,type_x,position_x,lm_x,label
def __len__(self):
return len(self.premise_encoded)
class GptDataset_full(Dataset):
def _split(self,x_y_meta):
x_all = []
y_all = []
meta_all = []
aug_all = []
keyword_all = []
for x, y, meta, aug, keyword in x_y_meta:
meta_all.append(meta)
x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
y_all.append(self.tokenizer.encode(text_standardize(y)))
aug_all.append(self.tokenizer.encode(text_standardize(aug)))
keyword_all.append(self.tokenizer.encode(text_standardize(keyword)))
return x_all,y_all,meta_all,aug_all, keyword_all
def _filt(self, length=1024):
data = zip(self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded)
data = [sample for sample in data if sum([len(sen) for sen in sample[0]][-self.args.num_turns:])+len(sample[1])+len(sample[3])+len(sample[4]) < 850]
self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded = zip(*data)
self.x_encoded = list(self.x_encoded)
self.y_encoded = list(self.y_encoded)
self.meta = list(self.meta)
self.aug_encoded = list(self.aug_encoded)
self.keyword_encoded = list(self.keyword_encoded)
def __init__(self,x_y_meta,tokenizer,args):
self.x_y_meta = x_y_meta
self.num_turns = args.num_turns
self.tokenizer = tokenizer
self.args = args
self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded = self._split(x_y_meta)
self._filt() # TODO: add back filt for mix-review
self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
self.augment = 5
if self.args.augment:
print("Using augment sentences.")
if self.args.keyword:
print("Using keywords.")
def __getitem__(self,index):
x = []
type_x = []
lm_x = []
if self.args.augment:
x += [self.augment] + self.aug_encoded[index]
if self.args.keyword:
x += [self.augment] + self.keyword_encoded[index]
type_x += [self.augment] * len(x)
is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation
for utt in self.x_encoded[index][-self.num_turns:]:
if is_speaker1: # add the prefix special token for each utterance
x+=[self.speaker1]
type_x += [self.speaker1]*(len(utt)+1)
else:
x+=[self.speaker2]
type_x += [self.speaker2]*(len(utt)+1)
x += utt
is_speaker1 = not is_speaker1
lm_x += [-100]*len(x) # all position for the input is masked for loss calculation
total_input_length = len(x)
x += [self.ref_start] + self.y_encoded[index] + [self.eos]
type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
lm_x += [-100] + self.y_encoded[index] + [self.eos]
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
lm_x = torch.Tensor(lm_x)
x_len = x.shape[0]
return x,type_x,position_x,lm_x,total_input_length,self.meta[index]
def __len__(self):
return len(self.x_encoded)
class GptDataset_nli(GptDataset_full):
def __init__(self, x_y_meta, tokenizer, args, infer=False):
super(GptDataset_nli, self).__init__(x_y_meta,tokenizer, args)
self.pos_len = len(self.x_encoded)
self.num_turns = 5
self.infer = infer
def __len__(self):
if self.infer:
return len(self.x_encoded)
else:
return 2 * len(self.x_encoded)
def __getitem__(self,index):
# client utterances - premise -speaker1
# response - hypothesis - ref_start
true_index = index
if index >= self.pos_len:
index = index - self.pos_len
x = []
type_x = []
lm_x = []
is_speaker1 = bool(len(self.x_encoded[index])%2) # which speaker start the conversation
x+=[self.speaker1]
type_x += [self.speaker1]
for utt in self.x_encoded[index][-self.num_turns:]:
if is_speaker1: # add the prefix special token for each utterance
type_x += [self.speaker1]*(len(utt))
x += utt
# else:
# x+=[self.speaker2]
# type_x += [self.speaker2]*(len(utt)+1)
# x += utt
is_speaker1 = not is_speaker1
total_input_length = len(x)
if true_index >= self.pos_len:
rand_index = random.randint(0,self.pos_len-1)
x += [self.ref_start] + self.y_encoded[rand_index] + [self.eos]
type_x += [self.ref_start]*(len(self.y_encoded[rand_index])+2)
else:
x += [self.ref_start] + self.y_encoded[index] + [self.eos]
type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
position_x = list(range(len(x)))
x = torch.Tensor(x)
type_x = torch.Tensor(type_x)
position_x = torch.Tensor(position_x)
x_len = x.shape[0]
label = torch.tensor(0) if true_index>self.pos_len else torch.tensor(1)
return x,type_x,position_x,lm_x, label
class XLDataset_nli(GptDataset_nli):
def __init__(self, x_y_meta, tokenizer, args, infer=False):
super(GptDataset_nli, self).__init__(x_y_meta,tokenizer, args)
self.pos_len = len(self.x_encoded)
self.num_turns = 5
self.infer = infer
# self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
self.pad, self.sep, self.cls = 5, 4, 3
self.unk, self.s, self.s_bar = 0, 1, 2
def __len__(self):
if self.infer:
return len(self.x_encoded)
else:
return 2 * len(self.x_encoded)
def __getitem__(self,index):
# client utterances - premise -speaker1
# response - hypothesis - ref_start
true_index = index
if index >= self.pos_len:
index = index - self.pos_len
x = []
type_x = []
lm_x = []
mask_x = []
is_speaker1 = bool(len(self.x_encoded[index])%2) # which speaker start the conversation
for utt in self.x_encoded[index][-self.num_turns:]:
if is_speaker1: # add the prefix special token for each utterance
type_x += [self.unk]*(len(utt))
x += utt
else:
type_x += [self.unk]*(len(utt))
x += utt
is_speaker1 = not is_speaker1
# import pdb;pdb.set_trace()
x += [self.sep]
type_x += [self.unk]
total_input_length = len(x)
if true_index >= self.pos_len:
rand_index = random.randint(0,self.pos_len-1)
x += self.y_encoded[rand_index] + [self.sep, self.cls]
type_x += [self.s]*(len(self.y_encoded[rand_index])+1) + [self.s_bar]
else:
# x += [self.ref_start] + self.y_encoded[index] + [self.eos]
# type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
x += self.y_encoded[index] + [self.sep, self.cls]
type_x += [self.s]*(len(self.y_encoded[index])+1) + [self.s_bar]
position_x = list(range(len(x)))
mask_x = [self.s] * len(x)
# ####
# x = x[-100:]
# mask_x = mask_x[-100:]
# type_x = type_x[-100:]
# left padding
x = [self.pad] * (self.args.max_length-len(x)) + x[-self.args.max_length:]
mask_x = [self.unk] * (self.args.max_length-len(mask_x)) + mask_x[-self.args.max_length:]
type_x = [self.sep] * (self.args.max_length-len(type_x)) + type_x[-self.args.max_length:]
x = torch.Tensor(x).long()
mask_x = torch.Tensor(mask_x).long()
type_x = torch.Tensor(type_x).long()
position_x = torch.Tensor(position_x)
x_len = x.shape[0]
label = torch.tensor(0) if true_index>self.pos_len else torch.tensor(1)
# label = torch.tensor(0) if true_index>self.pos_len else torch.tensor(0)
if USE_CUDA:
x = x.cuda()
mask_x = mask_x.cuda()
type_x = type_x.cuda()
label = label.cuda()
# return x, mask_x, type_x, label, position_x, lm_x
return x, mask_x, type_x, label
def get_data(args, tokenizer, split_size):
"""
Return the data loaders needed for training and evaluation.
:param args: command line arguments.
:param tokenizer: the tokenizer used in preparing the data.
:param split_size: the portion of train, test, validation set.
:return data_loader: The data loader for the training set.
:return val_loader: The data loader for the validation set.
"""
# random.seed(args.seed)
# torch.random.manual_seed(args.seed)
# torch.cuda.manual_seed(args.seed)
# torch.manual_seed(args.seed)
if args.special_input:
print("Using mutated data.")
pickle_handler = open('../data_processed/' + args.special_input, 'rb')
x_y_meta = pickle.load(pickle_handler)
gpt_data = GptDataset(x_y_meta, tokenizer, args.output_dir, num_turns=args.num_turns)
else:
print("Using full data.")
pickle_handler = open('../data_processed/x_y_meta_all', 'rb') # TODO: change back to the old data.
x_y_meta = pickle.load(pickle_handler)
gpt_data = GptDataset_full(x_y_meta, tokenizer, args=args)
print("Dataset initialized. There are {} samples.".format(len(gpt_data)))
test_size = int(len(gpt_data) * split_size['test'])
val_size = int(len(gpt_data) * split_size['val'])
gpt_train, gpt_test, gpt_val = torch.utils.data.random_split(gpt_data,
[len(gpt_data) - test_size - val_size, test_size,
val_size])
# import pdb;pdb.set_trace()
# with open('../../mi_data/train','wb') as f:
# pickle.dump(gpt_train, f)
# with open('../../mi_data/test','wb') as f:
# pickle.dump(gpt_test, f)
# with open('../../mi_data/val','wb') as f:
# pickle.dump(gpt_val, f)
if 'train_batch_size' not in args:
args.train_batch_size = 1
data_loader = DataLoader(dataset=gpt_train, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
collate_fn=collate_fn)
test_loader = DataLoader(dataset=gpt_test, batch_size=1, shuffle=False, drop_last=False, collate_fn=collate_fn)
val_loader = DataLoader(dataset=gpt_val, batch_size=1, shuffle=False, drop_last=False, collate_fn=collate_fn)
return data_loader, test_loader, val_loader
def prepare_mix_review(args, tokenizer):
print("Preparing Alexander dataset")
pickle_handler = open('../data_processed/data_alex', 'rb')
data = pickle.load(pickle_handler)
gpt_alex = GptDataset_full(data, tokenizer, args=args)
print("Alexander dataset prepared. Has {} samples".format(len(gpt_alex)))
return gpt_alex
def update_mix_review(gpt_train, gpt_alex, epoch, args, mix_ratio=4, mix_decay=0.7, collate_fn=collate_fn):
mix_amount = int(mix_ratio*(0.7**epoch)*len(gpt_train))
gpt_alex_active,_ = torch.utils.data.random_split(gpt_alex, [mix_amount, len(gpt_alex)-mix_amount])
data_loader = DataLoader(dataset=gpt_train+gpt_alex_active, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
collate_fn=collate_fn)
return data_loader
def get_data_old(args, tokenizer, split_size):
"""
Return the data loaders needed for training and evaluation.
:param args: command line arguments.
:param tokenizer: the tokenizer used in preparing the data.
:param split_size: the portion of train, test, validation set.
:return data_loader: The data loader for the training set.
:return val_loader: The data loader for the validation set.
"""
if args.special_input:
print("Using mutated data.")
pickle_handler = open('../data_processed/' + args.special_input, 'rb')
x_y_meta = pickle.load(pickle_handler)
if args.augment:
print("testing keywords with augment loader.")
gpt_data = GptDataset_aug(x_y_meta, tokenizer, num_turns=args.num_turns)
else:
gpt_data = GptDataset(x_y_meta, tokenizer, args.output_dir, num_turns=args.num_turns)
elif args.augment:
print("Using augmented data")
pickle_handler = open('../data_processed/x_y_meta_aug', 'rb')
x_y_meta = pickle.load(pickle_handler)
gpt_data = GptDataset_aug(x_y_meta, tokenizer, num_turns=args.num_turns)
elif args.keyword:
print("Using keyword cross attention")
pickle_handler = open('../data_processed/x_y_meta_keyword', 'rb')
x_y_meta = pickle.load(pickle_handler)
gpt_data = GptDataset_keyword(x_y_meta, tokenizer)
else:
print("Using vanilla data.")
pickle_handler = open('../data_processed/x_y_meta', 'rb')
x_y_meta = pickle.load(pickle_handler)
gpt_data = GptDataset(x_y_meta, tokenizer, args.output_dir, num_turns=args.num_turns)
print("Dataset initialized. There are {} samples.".format(len(gpt_data)))
test_size = int(len(gpt_data) * split_size['test'])
val_size = int(len(gpt_data) * split_size['val'])
gpt_train, gpt_test, gpt_val = torch.utils.data.random_split(gpt_data,
[len(gpt_data) - test_size - val_size, test_size,
val_size])
if args.keyword:
data_loader = DataLoader(dataset=gpt_train, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
collate_fn=collate_fn_keyword)
val_loader = DataLoader(dataset=gpt_val, batch_size=1, shuffle=False, drop_last=False,
collate_fn=collate_fn_keyword)
else:
data_loader = DataLoader(dataset=gpt_train, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
collate_fn=collate_fn)
val_loader = DataLoader(dataset=gpt_val, batch_size=1, shuffle=False, drop_last=False, collate_fn=collate_fn)
return data_loader, val_loader