Skip to content
Snippets Groups Projects
load_data.py 32.7 KiB
Newer Older
DeepLearning VM's avatar
DeepLearning VM committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
import torch
from torch.utils.data import Dataset,DataLoader
from torch.autograd import Variable
import json
import random
import sys
import pickle
from tqdm import tqdm
import copy
sys.path.append("..")
from utils import text_standardize


USE_CUDA = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if USE_CUDA else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if USE_CUDA else torch.ByteTensor


# ==== Code for data loading =====
class GptDataset(Dataset):
    """Take a list of samples with form [[x,...],y,meta]
    """
    # need 3 special tokens
    # # as <ref start> 2
    # $ as <speaker1> 3
    # % as <speaker2> 4
    # '<|endoftext|>' as <eos> 50256
    def _split(self,x_y_meta):
        x_all = []
        y_all = []
        meta_all = []
        for x,y,meta in x_y_meta:
            meta_all.append(meta)
            x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
            y_all.append(self.tokenizer.encode(text_standardize(y)))

        return x_all,y_all,meta_all
    
    def _filter(self,x_all,y_all,meta_all,filter_mode=None):
        allowed_pattern = ['SR_only','CR_only','Smoking_only','Diet_only']
        data = zip(x_all,y_all,meta_all)
        if filter_mode not in allowed_pattern:
            data_filt = data
        if filter_mode=='SR_only':
            data_filt = [x for x in data if x[2][2]=='SR']
        if filter_mode=='CR_only':
            data_filt = [x for x in data if x[2][2]=='CR']
        if filter_mode=='Smoking_only':
            data_filt = [x for x in data if x[2][1]=='Smoking cessation']
        if filter_mode=='Diet_only':
            data_filt = [x for x in data if x[2][1]=='Weight management']
        x_filt,y_filt,meta_filt = zip(*data_filt)
        return x_filt, y_filt, meta_filt

    def __init__(self,x_y_meta,tokenizer,filter_mode=None,num_turns=5):
        
        self.x_y_meta = x_y_meta
        self.num_turns = num_turns
        self.tokenizer = tokenizer
        self.x_encoded,self.y_encoded,self.meta = self._split(x_y_meta)
        self.x_encoded,self.y_encoded,self.meta = self._filter(self.x_encoded,self.y_encoded,self.meta,filter_mode)
        self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256

    def __getitem__(self,index):
        x = []
        type_x = []
        lm_x = []
        is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation

        for utt in self.x_encoded[index][-self.num_turns:]:
            if is_speaker1: # add the prefix special token for each utterance
                x+=[self.speaker1]
                type_x += [self.speaker1]*(len(utt)+1)
            else:
                x+=[self.speaker2]
                type_x += [self.speaker2]*(len(utt)+1)
            x += utt
            is_speaker1 = not is_speaker1
        lm_x += [-1]*len(x) # all position for the input is masked for loss calculation

        total_input_length = len(x)

        x += [self.ref_start] + self.y_encoded[index] + [self.eos]

        type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
        lm_x += [-1] + self.y_encoded[index] + [self.eos]
        position_x = list(range(len(x)))

        x = torch.Tensor(x)
        type_x = torch.Tensor(type_x)
        position_x = torch.Tensor(position_x)
        lm_x = torch.Tensor(lm_x)
        x_len = x.shape[0]
        
        return x,type_x,position_x,lm_x,total_input_length,self.meta[index]

    def __len__(self):
        return len(self.x_encoded)

# class GptDataset_keyword(Dataset):
#     def _split(self,x_y_meta):
#         x_all = []
#         y_all = []
#         meta_all = []
#         aug_all = []
#         for x,y,meta,aug in x_y_meta:
#             meta_all.append(meta)
#             x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
#             y_all.append(self.tokenizer.encode(text_standardize(y)))
#             key_word.append(self.tokenizer.encode(text_standardize(aug)))

#         return x_all,y_all,meta_all,aug_all

#     def __init__(self,x_y_meta,tokenizer,num_turns=5):
#         self.x_y_meta = x_y_meta
#         self.num_turns = num_turns
#         self.tokenizer = tokenizer
#         self.x_encoded,self.y_encoded,self.meta,self.aug_encoded = self._split(x_y_meta)
#         self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
#         self.augment = 5
#         self.keyword = 10 # '+'

class GptDataset_aug(Dataset):
    def _split(self,x_y_meta):
        x_all = []
        y_all = []
        meta_all = []
        aug_all = []
        for x,y,meta,aug in x_y_meta: 
            meta_all.append(meta)
            x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
            y_all.append(self.tokenizer.encode(text_standardize(y)))
            aug_all.append(self.tokenizer.encode(text_standardize(aug)))
        return x_all,y_all,meta_all,aug_all

    def __init__(self,x_y_meta,tokenizer,num_turns=5):
        self.x_y_meta = x_y_meta
        self.num_turns = num_turns
        self.tokenizer = tokenizer
        self.x_encoded,self.y_encoded,self.meta,self.aug_encoded = self._split(x_y_meta)
        self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
        self.augment = 5

    def __getitem__(self,index):
        x = []
        type_x = []
        lm_x = []

        x += [self.augment] + self.aug_encoded[index]
        type_x += [self.augment] * len(x)

        is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation

        for utt in self.x_encoded[index][-self.num_turns:]:
            if is_speaker1: # add the prefix special token for each utterance
                x+=[self.speaker1]
                type_x += [self.speaker1]*(len(utt)+1)
            else:
                x+=[self.speaker2]
                type_x += [self.speaker2]*(len(utt)+1)
            x += utt
            is_speaker1 = not is_speaker1
        lm_x += [-1]*len(x) # all position for the input is masked for loss calculation

        total_input_length = len(x)

        x += [self.ref_start] + self.y_encoded[index] + [self.eos]

        type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
        lm_x += [-1] + self.y_encoded[index] + [self.eos]
        position_x = list(range(len(x)))

        x = torch.Tensor(x)
        type_x = torch.Tensor(type_x)
        position_x = torch.Tensor(position_x)
        lm_x = torch.Tensor(lm_x)
        x_len = x.shape[0]
        
        return x,type_x,position_x,lm_x,total_input_length,self.meta[index]
    def __len__(self):
        return len(self.x_encoded)
def collate_fn(data):
    """Creates mini-batch tensors from the list of tuples (src_seq, trg_seq).
    We should build a custom collate_fn rather than using default collate_fn,
    because merging sequences (including padding) is not supported in default.
    Seqeuences are padded to the maximum length of mini-batch sequences (dynamic padding).
    Args:
        data: list of tuple (src_seq, trg_seq).
            - src_seq: torch tensor of shape (?); variable length.
            - trg_seq: torch tensor of shape (?); variable length.
    Returns:
        src_seqs: torch tensor of shape (batch_size, padded_length).
        src_lengths: list of length (batch_size); valid length for each padded source sequence.
        trg_seqs: torch tensor of shape (batch_size, padded_length).
        trg_lengths: list of length (batch_size); valid length for each padded target sequence.
    """
    def merge(sequences):
        lengths = [len(seq) for seq in sequences]
        padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
        for i, seq in enumerate(sequences):
            end = lengths[i]
            padded_seqs[i, :end] = seq[:end]
        return padded_seqs, lengths

    # sort a list by sequence length (descending order) to use pack_padded_sequence
    data.sort(key=lambda x: len(x[0]), reverse=True)

    # seperate source and target sequences
    src_seqs, trg_seqs, pos_seqs,lm_seqs,total_input_length,meta = zip(*data)

    # merge sequences (from tuple of 1D tensor to 2D tensor)
    src_seqs, src_lengths = merge(src_seqs)
    trg_seqs, trg_lengths = merge(trg_seqs)
    pos_seqs, pos_lengths = merge(pos_seqs)
    lm_seqs, lm_lengths = merge(lm_seqs)
    if USE_CUDA:
        src_seqs = src_seqs.cuda()
        trg_seqs = trg_seqs.cuda()
        pos_seqs = pos_seqs.cuda()
        lm_seqs = lm_seqs.cuda()
    return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),Variable(LongTensor(lm_seqs)), total_input_length, meta

def collate_fn_nli(data):
    """Creates mini-batch tensors from the list of tuples (src_seq, trg_seq).
    We should build a custom collate_fn rather than using default collate_fn,
    because merging sequences (including padding) is not supported in default.
    Seqeuences are padded to the maximum length of mini-batch sequences (dynamic padding).
    Args:
        data: list of tuple (src_seq, trg_seq).
            - src_seq: torch tensor of shape (?); variable length.
            - trg_seq: torch tensor of shape (?); variable length.
    Returns:
        src_seqs: torch tensor of shape (batch_size, padded_length).
        src_lengths: list of length (batch_size); valid length for each padded source sequence.
        trg_seqs: torch tensor of shape (batch_size, padded_length).
        trg_lengths: list of length (batch_size); valid length for each padded target sequence.
    """
    def merge(sequences):
        lengths = [len(seq) for seq in sequences]
        padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
        for i, seq in enumerate(sequences):
            end = lengths[i]
            padded_seqs[i, :end] = seq[:end]
        return padded_seqs, lengths

    # sort a list by sequence length (descending order) to use pack_padded_sequence
    data.sort(key=lambda x: len(x[0]), reverse=True)

    # seperate source and target sequences
    src_seqs, trg_seqs, pos_seqs,lm_seqs,label = zip(*data)

    # merge sequences (from tuple of 1D tensor to 2D tensor)
    src_seqs, src_lengths = merge(src_seqs)
    trg_seqs, trg_lengths = merge(trg_seqs)
    pos_seqs, pos_lengths = merge(pos_seqs)
    # lm_seqs, lm_lengths = merge(lm_seqs)
    label = torch.tensor(label)
    if USE_CUDA:
        src_seqs = src_seqs.cuda()
        trg_seqs = trg_seqs.cuda()
        pos_seqs = pos_seqs.cuda()
        # lm_seqs = lm_seqs.cuda()
        label = label.cuda()
    return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),lm_seqs, label

def collate_fn_keyword(data):
    def merge(sequences):
        lengths = [len(seq) for seq in sequences]
        padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
        for i, seq in enumerate(sequences):
            end = lengths[i]
            padded_seqs[i, :end] = seq[:end]
        return padded_seqs, lengths

    # sort a list by sequence length (descending order) to use pack_padded_sequence
    data.sort(key=lambda x: len(x[0]), reverse=True)

    # seperate source and target sequences
    src_seqs, trg_seqs, pos_seqs, lm_seqs, total_input_length, meta, keyword_x = zip(*data)

    # merge sequences (from tuple of 1D tensor to 2D tensor)
    src_seqs, src_lengths = merge(src_seqs)
    trg_seqs, trg_lengths = merge(trg_seqs)
    pos_seqs, pos_lengths = merge(pos_seqs)
    lm_seqs, lm_lengths = merge(lm_seqs)
    keyword_x, _ = merge(keyword_x)
    if USE_CUDA:
        src_seqs = src_seqs.cuda()
        trg_seqs = trg_seqs.cuda()
        pos_seqs = pos_seqs.cuda()
        lm_seqs = lm_seqs.cuda()
        keyword_x = keyword_x.cuda()
    return Variable(LongTensor(src_seqs)), Variable(LongTensor(trg_seqs)), Variable(LongTensor(pos_seqs)),Variable(LongTensor(lm_seqs)), total_input_length, meta,Variable(LongTensor(keyword_x))

class GptDataset_keyword(Dataset):
    def _split(self, x_y_meta):
        x_all = []
        y_all = []
        meta_all = []
        keyword_all = []
        for x, y, meta, keyword in x_y_meta:
            meta_all.append(meta)
            x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
            y_all.append(self.tokenizer.encode(text_standardize(y)))
            keyword_all.append(self.tokenizer.encode(text_standardize(keyword)))
        return x_all, y_all, meta_all, keyword_all

    def __init__(self, x_y_meta, tokenizer, num_turns=5):

        self.x_y_meta = x_y_meta
        self.num_turns = num_turns
        self.tokenizer = tokenizer
        self.x_encoded, self.y_encoded, self.meta, self.keyword = self._split(x_y_meta)
        self.ref_start, self.speaker1, self.speaker2, self.eos = 2, 3, 4, 50256

    def __getitem__(self, index):
        x = []
        type_x = []
        lm_x = []
        is_speaker1 = bool(len(self.x_encoded[index]) % 2)  # which speaker start the conversation

        for utt in self.x_encoded[index]:
            if is_speaker1:  # add the prefix special token for each utterance
                x += [self.speaker1]
                type_x += [self.speaker1] * (len(utt) + 1)
            else:
                x += [self.speaker2]
                type_x += [self.speaker2] * (len(utt) + 1)
            x += utt
            is_speaker1 = not is_speaker1
        lm_x += [-1] * len(x)  # all position for the input is masked for loss calculation

        total_input_length = len(x)

        x += [self.ref_start] + self.y_encoded[index] + [self.eos]

        type_x += [self.ref_start] * (len(self.y_encoded[index]) + 2)
        lm_x += [-1] + self.y_encoded[index] + [self.eos]
        position_x = list(range(len(x)))

        x = torch.Tensor(x)
        type_x = torch.Tensor(type_x)
        position_x = torch.Tensor(position_x)
        lm_x = torch.Tensor(lm_x)
        x_len = x.shape[0]

        keyword_x = [] + self.keyword[index]
        keyword_x = torch.Tensor(keyword_x)
        return x, type_x, position_x, lm_x, total_input_length, self.meta[index], keyword_x

    def __len__(self):
        return len(self.x_encoded)

# class GptDataset_nli(GptDataset):
#     def __init__(self, x_y_meta, tokenizer, filter_mode=None,num_turns=5,augment=True):
#         super(GptDataset_nli, self).__init__(x_y_meta,tokenizer, num_turns=num_turns)
#         self.augment = augment
#         self.pos_len = len(self.x_encoded)

#     def __len__(self):
#         if self.augment:
#             return 2 * len(self.x_encoded)
#         else:
#             return len(self.x_encoded)

#     def __getitem__(self,index):
#         # client utterances - premise -speaker1 
#         # response - hypothesis - ref_start
#         true_index = index
#         if index >= self.pos_len:
#             index = index - self.pos_len

#         x = []
#         type_x = []
#         lm_x = []
#         is_speaker1 = bool(len(self.x_encoded[index])%2) # which speaker start the conversation
        
#         x+=[self.speaker1]
#         type_x += [self.speaker1]
#         for utt in self.x_encoded[index][-self.num_turns:]:
#             if is_speaker1: # add the prefix special token for each utterance
#                 type_x += [self.speaker1]*(len(utt))
#                 x += utt
#             # else:
#             #     x+=[self.speaker2]
#             #     type_x += [self.speaker2]*(len(utt)+1)
#             #     x += utt
#             is_speaker1 = not is_speaker1

#         total_input_length = len(x)
        
#         if true_index >= self.pos_len:
#             rand_index = random.randint(0,self.pos_len-1)
#             x += [self.ref_start] + self.y_encoded[rand_index] + [self.eos]
#             type_x += [self.ref_start]*(len(self.y_encoded[rand_index])+2)
#         else:
#             x += [self.ref_start] + self.y_encoded[index] + [self.eos]
#             type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
#         position_x = list(range(len(x)))

#         x = torch.Tensor(x)
#         type_x = torch.Tensor(type_x)
#         position_x = torch.Tensor(position_x)
#         x_len = x.shape[0]
#         label = torch.tensor(0) if true_index>self.pos_len else torch.tensor(1)
#         return x,type_x,position_x,lm_x, label

class SnliDataset(Dataset):
    """Take a list of samples with form [[x,...],y,meta]
    """
    # need 3 special tokens
    # # as <ref start> 2
    # $ as <speaker1> 3
    # % as <speaker2> 4
    # '<|endoftext|>' as <eos> 50256
    def _split(self,data):
        positive_label = set(['entailment'])
        premise = []
        hypothesis = []
        label = []
        for p,h,l in tqdm(data):
            premise.append(self.tokenizer.encode(text_standardize(p)))
            hypothesis.append(self.tokenizer.encode(text_standardize(h)))
            if l in positive_label:
                label.append(torch.tensor(1))
            else:
                label.append(torch.tensor(0))
        return premise,hypothesis,label
    
    def _filter(self,premise,hypothesis,label,filter_mode=None):
        data = zip(premise,hypothesis,label)
        if filter_mode == None:
            data_filt = data
        else:
            data_filt = [x for x in data if x[2]!='-']
            
        premise_filt,hypothesis_filt,label_filt = zip(*data_filt)
        return premise_filt,hypothesis_filt,label_filt

    def parse_snli(self,path=None):
        with open(path) as f:
            data = [json.loads(line) for line in f]
        data_processed = [(line['sentence1'],line['sentence2'],line['gold_label']) for line in data]
        return data_processed

    def __init__(self,tokenizer,path='../data/snli_1.0/snli_1.0_train.jsonl',filter_mode=None,num_turns=5):
        
        self.data = self.parse_snli(path)
        self.tokenizer = tokenizer
        self.premise_encoded,self.hypothesis_encoded,self.label = self._split(self.data)
        self.premise_encoded,self.hypothesis_encoded,self.label = self._filter(self.premise_encoded,self.hypothesis_encoded,self.label,filter_mode)
        self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256

    def __getitem__(self,index):
        x = []
        type_x = []
        lm_x = []
        
        x += [self.speaker1]
        x += self.premise_encoded[index]
        type_x += [self.speaker1]*(len(self.premise_encoded[index])+1) # the premise part
        
        x += [self.ref_start] 
        x += self.hypothesis_encoded[index]
        x += [self.eos]
        type_x += [self.ref_start]*(len(self.hypothesis_encoded[index])+2) # the hypothesis part
        
        label = self.label[index]
        
        position_x = list(range(len(x)))

        x = torch.Tensor(x)
        type_x = torch.Tensor(type_x)
        position_x = torch.Tensor(position_x)
        
        return x,type_x,position_x,lm_x,label

    def __len__(self):
        return len(self.premise_encoded)

class GptDataset_full(Dataset):
    def _split(self,x_y_meta):
        x_all = []
        y_all = []
        meta_all = []
        aug_all = []
        keyword_all = []
        for x, y, meta, aug, keyword in x_y_meta:
            meta_all.append(meta)
            x_all.append([self.tokenizer.encode(text_standardize(x_i)) for x_i in x])
            y_all.append(self.tokenizer.encode(text_standardize(y)))
            aug_all.append(self.tokenizer.encode(text_standardize(aug)))
            keyword_all.append(self.tokenizer.encode(text_standardize(keyword)))
        return x_all,y_all,meta_all,aug_all, keyword_all

    def _filt(self, length=1024):
        data = zip(self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded)
        data = [sample for sample in data if sum([len(sen) for sen in sample[0]][-self.args.num_turns:])+len(sample[1])+len(sample[3])+len(sample[4]) < 850]
        self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded = zip(*data)
        self.x_encoded = list(self.x_encoded)
        self.y_encoded = list(self.y_encoded)
        self.meta = list(self.meta)
        self.aug_encoded = list(self.aug_encoded)
        self.keyword_encoded = list(self.keyword_encoded)

    def __init__(self,x_y_meta,tokenizer,args):
        self.x_y_meta = x_y_meta
        self.num_turns = args.num_turns
        self.tokenizer = tokenizer
        self.args = args
        self.x_encoded,self.y_encoded,self.meta,self.aug_encoded, self.keyword_encoded = self._split(x_y_meta)
        self._filt() # TODO: add back filt for mix-review
        self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
        self.augment = 5
        if self.args.augment:
            print("Using augment sentences.")
        if self.args.keyword:
            print("Using keywords.")

    def __getitem__(self,index):
        x = []
        type_x = []
        lm_x = []

        if self.args.augment:
            x += [self.augment] + self.aug_encoded[index]
        if self.args.keyword:
            x += [self.augment] + self.keyword_encoded[index]
        type_x += [self.augment] * len(x)
        
        is_speaker1 = bool(self.num_turns % 2) # which speaker start the conversation

        for utt in self.x_encoded[index][-self.num_turns:]:
            if is_speaker1: # add the prefix special token for each utterance
                x+=[self.speaker1]
                type_x += [self.speaker1]*(len(utt)+1)
            else:
                x+=[self.speaker2]
                type_x += [self.speaker2]*(len(utt)+1)
            x += utt
            is_speaker1 = not is_speaker1
        lm_x += [-100]*len(x) # all position for the input is masked for loss calculation

        total_input_length = len(x)

        x += [self.ref_start] + self.y_encoded[index] + [self.eos]

        type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
        lm_x += [-100] + self.y_encoded[index] + [self.eos]
        position_x = list(range(len(x)))

        x = torch.Tensor(x)
        type_x = torch.Tensor(type_x)
        position_x = torch.Tensor(position_x)
        lm_x = torch.Tensor(lm_x)
        x_len = x.shape[0]
        
        return x,type_x,position_x,lm_x,total_input_length,self.meta[index]

    def __len__(self):
        return len(self.x_encoded)


class GptDataset_nli(GptDataset_full):
    def __init__(self, x_y_meta, tokenizer, args, infer=False):
        super(GptDataset_nli, self).__init__(x_y_meta,tokenizer, args)
        self.pos_len = len(self.x_encoded)
        self.num_turns = 5
        self.infer = infer
    def __len__(self):
        if self.infer:
            return len(self.x_encoded)
        else:
            return 2 * len(self.x_encoded)

    def __getitem__(self,index):
        # client utterances - premise -speaker1 
        # response - hypothesis - ref_start
        true_index = index
        if index >= self.pos_len:
            index = index - self.pos_len

        x = []
        type_x = []
        lm_x = []
        is_speaker1 = bool(len(self.x_encoded[index])%2) # which speaker start the conversation
        
        x+=[self.speaker1]
        type_x += [self.speaker1]
        for utt in self.x_encoded[index][-self.num_turns:]:
            if is_speaker1: # add the prefix special token for each utterance
                type_x += [self.speaker1]*(len(utt))
                x += utt
            # else:
            #     x+=[self.speaker2]
            #     type_x += [self.speaker2]*(len(utt)+1)
            #     x += utt
            is_speaker1 = not is_speaker1

        total_input_length = len(x)
        
        if true_index >= self.pos_len:
            rand_index = random.randint(0,self.pos_len-1)
            x += [self.ref_start] + self.y_encoded[rand_index] + [self.eos]
            type_x += [self.ref_start]*(len(self.y_encoded[rand_index])+2)
        else:
            x += [self.ref_start] + self.y_encoded[index] + [self.eos]
            type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
        position_x = list(range(len(x)))

        x = torch.Tensor(x)
        type_x = torch.Tensor(type_x)
        position_x = torch.Tensor(position_x)
        x_len = x.shape[0]
        label = torch.tensor(0) if true_index>self.pos_len else torch.tensor(1)

        return x,type_x,position_x,lm_x, label

class XLDataset_nli(GptDataset_nli):
    def __init__(self, x_y_meta, tokenizer, args, infer=False):
        super(GptDataset_nli, self).__init__(x_y_meta,tokenizer, args)
        self.pos_len = len(self.x_encoded)
        self.num_turns = 5
        self.infer = infer
#         self.ref_start, self.speaker1,self.speaker2,self.eos = 2,3,4,50256
        self.pad, self.sep, self.cls = 5, 4, 3
        self.unk, self.s, self.s_bar = 0, 1, 2

    def __len__(self):
        if self.infer:
            return len(self.x_encoded)
        else:
            return 2 * len(self.x_encoded)

    def __getitem__(self,index):
        # client utterances - premise -speaker1 
        # response - hypothesis - ref_start
        true_index = index
        if index >= self.pos_len:
            index = index - self.pos_len
    
        
        x = []
        type_x = []
        lm_x = []
        mask_x = []
        is_speaker1 = bool(len(self.x_encoded[index])%2) # which speaker start the conversation
        
        
        for utt in self.x_encoded[index][-self.num_turns:]:
            if is_speaker1: # add the prefix special token for each utterance
                type_x += [self.unk]*(len(utt))
                x += utt
            else:
                type_x += [self.unk]*(len(utt))
                x += utt
            is_speaker1 = not is_speaker1
#         import pdb;pdb.set_trace()
        x += [self.sep]
        type_x += [self.unk]
        
        total_input_length = len(x)
        
        if true_index >= self.pos_len:
            rand_index = random.randint(0,self.pos_len-1)
            x += self.y_encoded[rand_index] + [self.sep, self.cls]
            type_x += [self.s]*(len(self.y_encoded[rand_index])+1) + [self.s_bar]
        else:
#             x += [self.ref_start] + self.y_encoded[index] + [self.eos]
#             type_x += [self.ref_start]*(len(self.y_encoded[index])+2)
            x += self.y_encoded[index] + [self.sep, self.cls]
            type_x += [self.s]*(len(self.y_encoded[index])+1) + [self.s_bar]
        
        position_x = list(range(len(x)))
        mask_x = [self.s] * len(x)
        
#         ####
#         x = x[-100:]
#         mask_x = mask_x[-100:]
#         type_x = type_x[-100:]
        
        # left padding 
        x = [self.pad] * (self.args.max_length-len(x)) + x[-self.args.max_length:]
        mask_x = [self.unk] * (self.args.max_length-len(mask_x)) + mask_x[-self.args.max_length:]
        type_x = [self.sep] * (self.args.max_length-len(type_x)) + type_x[-self.args.max_length:]
        
        x = torch.Tensor(x).long()
        mask_x = torch.Tensor(mask_x).long()
        type_x = torch.Tensor(type_x).long()
        position_x = torch.Tensor(position_x)
        
        x_len = x.shape[0]
        
        label = torch.tensor(0) if true_index>self.pos_len else torch.tensor(1)
        # label = torch.tensor(0) if true_index>self.pos_len else torch.tensor(0)
        
        if USE_CUDA:
            x = x.cuda()
            mask_x = mask_x.cuda()
            type_x = type_x.cuda()
            label = label.cuda()
#         return x, mask_x, type_x, label, position_x, lm_x
        return x, mask_x, type_x, label





def get_data(args, tokenizer, split_size):
    """
    Return the data loaders needed for training and evaluation.
    :param args: command line arguments.
    :param tokenizer: the tokenizer used in preparing the data.
    :param split_size: the portion of train, test, validation set.
    :return data_loader: The data loader for the training set.
    :return val_loader: The data loader for the validation set.
    """
    # random.seed(args.seed)
    # torch.random.manual_seed(args.seed)
    # torch.cuda.manual_seed(args.seed)
    # torch.manual_seed(args.seed)
    if args.special_input:
        print("Using mutated data.")
        pickle_handler = open('../data_processed/' + args.special_input, 'rb')
        x_y_meta = pickle.load(pickle_handler)
        gpt_data = GptDataset(x_y_meta, tokenizer, args.output_dir, num_turns=args.num_turns)
    else:
        print("Using full data.")
        pickle_handler = open('../data_processed/x_y_meta_all', 'rb') # TODO: change back to the old data.
        x_y_meta = pickle.load(pickle_handler)
        gpt_data = GptDataset_full(x_y_meta, tokenizer, args=args)
    print("Dataset initialized. There are {} samples.".format(len(gpt_data)))

    test_size = int(len(gpt_data) * split_size['test'])
    val_size = int(len(gpt_data) * split_size['val'])

    gpt_train, gpt_test, gpt_val = torch.utils.data.random_split(gpt_data,
                                                                 [len(gpt_data) - test_size - val_size, test_size,
                                                                  val_size])

    # import pdb;pdb.set_trace()
    # with open('../../mi_data/train','wb') as f:
    #     pickle.dump(gpt_train, f)
    # with open('../../mi_data/test','wb') as f:
    #     pickle.dump(gpt_test, f)
    # with open('../../mi_data/val','wb') as f:
    #     pickle.dump(gpt_val, f)

    if 'train_batch_size' not in args:
        args.train_batch_size = 1
    data_loader = DataLoader(dataset=gpt_train, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
                            collate_fn=collate_fn)
    test_loader = DataLoader(dataset=gpt_test, batch_size=1, shuffle=False, drop_last=False, collate_fn=collate_fn)
    val_loader = DataLoader(dataset=gpt_val, batch_size=1, shuffle=False, drop_last=False, collate_fn=collate_fn)
    return data_loader, test_loader, val_loader

def prepare_mix_review(args, tokenizer):
    print("Preparing Alexander dataset")
    pickle_handler = open('../data_processed/data_alex', 'rb')
    data = pickle.load(pickle_handler)
    gpt_alex = GptDataset_full(data, tokenizer, args=args)
    print("Alexander dataset prepared. Has {} samples".format(len(gpt_alex)))
    return gpt_alex

def update_mix_review(gpt_train, gpt_alex, epoch, args, mix_ratio=4, mix_decay=0.7, collate_fn=collate_fn):
    mix_amount = int(mix_ratio*(0.7**epoch)*len(gpt_train))
    gpt_alex_active,_ = torch.utils.data.random_split(gpt_alex, [mix_amount, len(gpt_alex)-mix_amount])

    data_loader = DataLoader(dataset=gpt_train+gpt_alex_active, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
                                collate_fn=collate_fn)
    return data_loader

def get_data_old(args, tokenizer, split_size):
    """
    Return the data loaders needed for training and evaluation.
    :param args: command line arguments.
    :param tokenizer: the tokenizer used in preparing the data.
    :param split_size: the portion of train, test, validation set.
    :return data_loader: The data loader for the training set.
    :return val_loader: The data loader for the validation set.
    """
    if args.special_input:
        print("Using mutated data.")
        pickle_handler = open('../data_processed/' + args.special_input, 'rb')
        x_y_meta = pickle.load(pickle_handler)
        if args.augment:
            print("testing keywords with augment loader.")
            gpt_data = GptDataset_aug(x_y_meta, tokenizer, num_turns=args.num_turns)
        else:
            gpt_data = GptDataset(x_y_meta, tokenizer, args.output_dir, num_turns=args.num_turns)
    elif args.augment:
        print("Using augmented data")
        pickle_handler = open('../data_processed/x_y_meta_aug', 'rb')
        x_y_meta = pickle.load(pickle_handler)
        gpt_data = GptDataset_aug(x_y_meta, tokenizer, num_turns=args.num_turns)
    elif args.keyword:
        print("Using keyword cross attention")
        pickle_handler = open('../data_processed/x_y_meta_keyword', 'rb')
        x_y_meta = pickle.load(pickle_handler)
        gpt_data = GptDataset_keyword(x_y_meta, tokenizer)
    else:
        print("Using vanilla data.")
        pickle_handler = open('../data_processed/x_y_meta', 'rb')
        x_y_meta = pickle.load(pickle_handler)
        gpt_data = GptDataset(x_y_meta, tokenizer, args.output_dir, num_turns=args.num_turns)

    print("Dataset initialized. There are {} samples.".format(len(gpt_data)))
    test_size = int(len(gpt_data) * split_size['test'])
    val_size = int(len(gpt_data) * split_size['val'])
    gpt_train, gpt_test, gpt_val = torch.utils.data.random_split(gpt_data,
                                                                 [len(gpt_data) - test_size - val_size, test_size,
                                                                  val_size])
    if args.keyword:
        data_loader = DataLoader(dataset=gpt_train, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
                                 collate_fn=collate_fn_keyword)
        val_loader = DataLoader(dataset=gpt_val, batch_size=1, shuffle=False, drop_last=False,
                                collate_fn=collate_fn_keyword)
    else:
        data_loader = DataLoader(dataset=gpt_train, batch_size=args.train_batch_size, shuffle=True, drop_last=True,
                                 collate_fn=collate_fn)
        val_loader = DataLoader(dataset=gpt_val, batch_size=1, shuffle=False, drop_last=False, collate_fn=collate_fn)
    return data_loader, val_loader