Skip to content
Snippets Groups Projects
Commit 6525804a authored by Ross Girshick's avatar Ross Girshick
Browse files

misc cleanup

parent 390f538d
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/env python
import _init_paths
import fast_rcnn as frc
from fast_rcnn.test import apply_nms
from fast_rcnn.config import cfg
from datasets.factory import get_imdb
import cPickle
......@@ -36,7 +36,7 @@ def from_dets(imdb_name, output_dir):
dets = cPickle.load(f)
print 'Applying NMS to all detections'
nms_dets = frc.test.apply_nms(dets, cfg.TEST.NMS)
nms_dets = apply_nms(dets, cfg.TEST.NMS)
print 'Evaluating detections'
imdb.evaluate_detections(nms_dets, output_dir)
......
......@@ -8,7 +8,7 @@
# --------------------------------------------------------
import _init_paths
import fast_rcnn as frc
from fast_rcnn.test import test_net
from fast_rcnn.config import cfg, cfg_from_file
from datasets.factory import get_imdb
import caffe
......@@ -47,7 +47,6 @@ def parse_args():
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
......@@ -76,4 +75,4 @@ if __name__ == '__main__':
if 'cleanup' in imdb.config:
imdb.config['cleanup'] = False
frc.test.test_net(net, imdb)
test_net(net, imdb)
......@@ -65,11 +65,11 @@ if __name__ == '__main__':
if args.gpu_id is not None:
caffe.set_device(args.gpu_id)
imdb_train = get_imdb(args.imdb_name)
print 'Loaded dataset `{:s}` for training'.format(imdb_train.name)
roidb = get_training_roidb(imdb_train)
imdb = get_imdb(args.imdb_name)
print 'Loaded dataset `{:s}` for training'.format(imdb.name)
roidb = get_training_roidb(imdb)
output_dir = get_output_dir(imdb_train, None)
output_dir = get_output_dir(imdb, None)
print 'Output will be saved to `{:s}`'.format(output_dir)
train_net(args.solver, roidb, output_dir,
......
......@@ -327,17 +327,16 @@ if __name__ == '__main__':
out = os.path.splitext(os.path.basename(args.caffemodel))[0] + '_svm'
out_dir = os.path.dirname(args.caffemodel)
imdb_train = get_imdb(args.imdb_name)
print 'Loaded dataset `{:s}` for training'.format(imdb_train.name)
imdb = get_imdb(args.imdb_name)
print 'Loaded dataset `{:s}` for training'.format(imdb.name)
# enhance roidb to contain flipped examples
if cfg.TRAIN.USE_FLIPPED:
print 'Appending horizontally-flipped training examples...'
imdb_train.append_flipped_roidb()
imdb.append_flipped_roidb()
print 'done'
trainer = SVMTrainer(net, imdb_train)
trainer.train()
SVMTrainer(net, imdb).train()
filename = '{}/{}.caffemodel'.format(out_dir, out)
net.save(filename)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment