diff --git a/tools/reval.py b/tools/reval.py index 993278b07cf38c03c54c8e255fae93fa6ac44be3..760cd46889ff5c4df190cd93a7af1d093d683fdd 100755 --- a/tools/reval.py +++ b/tools/reval.py @@ -1,7 +1,7 @@ #!/usr/bin/env python import _init_paths -import fast_rcnn as frc +from fast_rcnn.test import apply_nms from fast_rcnn.config import cfg from datasets.factory import get_imdb import cPickle @@ -36,7 +36,7 @@ def from_dets(imdb_name, output_dir): dets = cPickle.load(f) print 'Applying NMS to all detections' - nms_dets = frc.test.apply_nms(dets, cfg.TEST.NMS) + nms_dets = apply_nms(dets, cfg.TEST.NMS) print 'Evaluating detections' imdb.evaluate_detections(nms_dets, output_dir) diff --git a/tools/test_net.py b/tools/test_net.py index dd1914fefa27ba0aa32f4a8bdb1eb653daf04417..69fa1bce47c1a700b574ba291f8bd63105cdade1 100755 --- a/tools/test_net.py +++ b/tools/test_net.py @@ -8,7 +8,7 @@ # -------------------------------------------------------- import _init_paths -import fast_rcnn as frc +from fast_rcnn.test import test_net from fast_rcnn.config import cfg, cfg_from_file from datasets.factory import get_imdb import caffe @@ -47,7 +47,6 @@ def parse_args(): args = parser.parse_args() return args - if __name__ == '__main__': args = parse_args() @@ -76,4 +75,4 @@ if __name__ == '__main__': if 'cleanup' in imdb.config: imdb.config['cleanup'] = False - frc.test.test_net(net, imdb) + test_net(net, imdb) diff --git a/tools/train_net.py b/tools/train_net.py index 48a23b3378d814b5a30c2c5bf79f85da55856d59..1431881fdcf0b30a3f42cf1d582e8e25067226cb 100755 --- a/tools/train_net.py +++ b/tools/train_net.py @@ -65,11 +65,11 @@ if __name__ == '__main__': if args.gpu_id is not None: caffe.set_device(args.gpu_id) - imdb_train = get_imdb(args.imdb_name) - print 'Loaded dataset `{:s}` for training'.format(imdb_train.name) - roidb = get_training_roidb(imdb_train) + imdb = get_imdb(args.imdb_name) + print 'Loaded dataset `{:s}` for training'.format(imdb.name) + roidb = get_training_roidb(imdb) - output_dir = get_output_dir(imdb_train, None) + output_dir = get_output_dir(imdb, None) print 'Output will be saved to `{:s}`'.format(output_dir) train_net(args.solver, roidb, output_dir, diff --git a/tools/train_svms.py b/tools/train_svms.py index 3001ac2542c548a02eb367098239c34f2cae3fb8..714e15830d384e552f754600bb9d74e48b167e6f 100755 --- a/tools/train_svms.py +++ b/tools/train_svms.py @@ -327,17 +327,16 @@ if __name__ == '__main__': out = os.path.splitext(os.path.basename(args.caffemodel))[0] + '_svm' out_dir = os.path.dirname(args.caffemodel) - imdb_train = get_imdb(args.imdb_name) - print 'Loaded dataset `{:s}` for training'.format(imdb_train.name) + imdb = get_imdb(args.imdb_name) + print 'Loaded dataset `{:s}` for training'.format(imdb.name) # enhance roidb to contain flipped examples if cfg.TRAIN.USE_FLIPPED: print 'Appending horizontally-flipped training examples...' - imdb_train.append_flipped_roidb() + imdb.append_flipped_roidb() print 'done' - trainer = SVMTrainer(net, imdb_train) - trainer.train() + SVMTrainer(net, imdb).train() filename = '{}/{}.caffemodel'.format(out_dir, out) net.save(filename)