Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
e24a9c26
Commit
e24a9c26
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
new syntax in progress
parent
3c279293
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
formalizations/guarded-cubical/Syntax/SyntaxNew.agda
+270
-0
270 additions, 0 deletions
formalizations/guarded-cubical/Syntax/SyntaxNew.agda
formalizations/guarded-cubical/Syntax/Types.agda
+169
-0
169 additions, 0 deletions
formalizations/guarded-cubical/Syntax/Types.agda
with
439 additions
and
0 deletions
formalizations/guarded-cubical/Syntax/SyntaxNew.agda
0 → 100644
+
270
−
0
View file @
e24a9c26
{-# OPTIONS --cubical --rewriting --guarded #-}
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --lossy-unification #-}
open import Common.Later hiding (next)
module Syntax.SyntaxNew where
open import Cubical.Foundations.Prelude renaming (comp to compose)
open import Cubical.Data.Nat hiding (_·_) renaming (ℕ to Nat)
open import Cubical.Relation.Nullary
open import Cubical.Foundations.Function
open import Cubical.Data.Prod hiding (map)
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.List
using (List ; length ; map ; _++_ ; cons-inj₁ ; cons-inj₂)
renaming ([] to · ; _∷_ to _::_)
open import Cubical.Data.Empty renaming (rec to exFalso)
import Syntax.DeBruijnCommon
private
variable
ℓ : Level
open import Syntax.Types
private
variable
α : IntExt
-- ############### Terms / Term Precision ###############
-- All constructors below except for those for upcast and downcast are simultaneously
-- the term constructors, as well as the constructors for the corresponding term
-- precision congruence rule.
-- This explains why Ξ is generic in all but the up and dn constructors,
-- where it is Empty to indicate that we do not obtain term precision congruence rules.
data PureImpure : Type where
Pure Impure : PureImpure
data Tm : {v : PureImpure} -> {α : IntExt} -> {Ξ : iCtx} -> (Γ : Ctx {α} Ξ) -> Ty {α} Ξ -> Type ℓ-zero
-- data Val : {α : IntExt} -> {Ξ : iCtx} -> (Γ : Ctx {α} Ξ) -> Ty {α} Ξ -> Type ℓ-zero
tm-endpt : ∀ {v} {α} (p : Interval) -> {Γ : Ctx {α} Full} -> {c : Ty {α} Full} ->
Tm {v} {α} {Full} Γ c ->
Tm {v} {α} {Empty} (ctx-endpt p Γ) (ty-endpt p c)
_[_] : ∀ {α Γ A B}
→ Tm {Impure} {α} {Empty} (B :: Γ) A
→ Tm {Pure} {α} {Empty} Γ B
→ Tm {Impure} {α} {Empty} Γ A
_[_] = {!!}
wk : ∀ {v α Γ A B} -> Tm {v} {α} {Empty} Γ A ->
Tm {v} {α} {Empty} (B :: Γ) A
wk = {!!}
-- data Val where
data Tm where
var : ∀ {α Ξ Γ T} -> Γ ∋ T -> Tm {Pure} {α} {Ξ} Γ T
lda : ∀ {α Ξ Γ S T} -> (Tm {Impure} {α} {Ξ} (S :: Γ) T) -> Tm {Pure} Γ (S ⇀ T)
app : ∀ {α Ξ Γ S T} -> (Tm {Pure} {α} {Ξ} Γ (S ⇀ T)) -> (Tm {Pure} Γ S) -> (Tm {Impure} Γ T)
err : ∀ {α Ξ Γ A} -> Tm {Impure} {α} {Ξ} Γ A
zro : ∀ {α Ξ Γ} -> Tm {Pure} {α} {Ξ} Γ nat
suc : ∀ {α Ξ Γ} -> Tm {Pure} {α} {Ξ} Γ nat -> Tm {Pure} Γ nat
ret : ∀ {α Ξ Γ A} -> Tm {Pure} {α} {Ξ} Γ A -> Tm {Impure} Γ A
bind : ∀ {α Ξ Γ A B} -> Tm {Pure} {α} {Ξ} Γ A ->
Tm {Impure} {α} {Ξ} (A :: Γ) B -> Tm {Impure} {α} {Ξ} Γ B
inj-nat : ∀ {α Ξ Γ} -> Tm {Pure} {α} {Ξ} Γ nat -> Tm {Pure} Γ dyn
inj-arr-ext : ∀ {Ξ Γ} -> Tm {Pure} {Ext} {Ξ} Γ (dyn ⇀ dyn) -> Tm {Pure} {Ext} Γ dyn
inj-arr-int : ∀ {Ξ Γ} -> Tm {Pure} {Int} {Ξ} Γ (▹ (dyn ⇀ dyn)) -> Tm {Pure} {Int} Γ dyn
case-nat : ∀ {α Ξ Γ B} -> Tm {Pure} {α} {Ξ} Γ dyn ->
Tm {Impure} {α} {Ξ} (nat :: Γ) B -> Tm {Impure} {α} Γ B
case-arr-ext : ∀ {Ξ Γ B} -> Tm {Pure} {Ext} {Ξ} Γ dyn ->
Tm {Impure} {Ext} {Ξ} ((dyn ⇀ dyn) :: Γ) B -> Tm {Impure} {Ext} Γ B
case-arr-int : ∀ {Ξ Γ B} -> Tm {Pure} {Int} {Ξ} Γ dyn ->
Tm {Impure} {Int} {Ξ} ((▹ (dyn ⇀ dyn)) :: Γ) B -> Tm {Impure} {Int} Γ B
-- Other term precision rules:
err-bot : ∀ {α Γ} (B : Ty {α} Empty) (M : Tm {Impure} {α} {Empty} Γ B) -> Tm {Impure} {α} {Full} (ctx-refl Γ) (ty-refl B)
--err-bot : ∀ {α} {Γ : Ctx Full} (c : Ty Full)
-- (M : Tm {Impure} {α} {Empty} (ctx-endpt r Γ) (ty-right c)) -> Tm {Impure} {α} {Full} Γ c
-- TODO do we need to restrict the left endpoint of Γ?
trans : ∀ {v : PureImpure} {Γ Δ : Ctx {α} Full} -> {A B : Ty Full} ->
(M : Tm {v} Γ A) -> (N : Tm {v} Δ B) ->
(ctx-p : ctx-endpt l Δ ≡ ctx-endpt r Γ) ->
(ty-p : ty-endpt l B ≡ ty-endpt r A)
(tm-p : PathP (λ i → Tm {v} (ctx-p i) (ty-p i)) (tm-endpt l {Δ} {B} N) (tm-endpt r {Γ} {A} M)) ->
Tm {v} (CompCtx Δ Γ ctx-p) (comp B A ty-p)
-- Cast rules
-- Equational theory:
β-fun : ∀ {α Γ A B} {M : Tm {Impure} {α} {Empty} (A :: Γ) B} {V : Tm {Pure} {α} {Empty} Γ A} ->
app (lda M) V ≡ M [ V ]
η-fun : ∀ {α Γ A B} {Vf : Tm {Pure} {α} {Empty} Γ (A ⇀ B)} {x : (A :: Γ) ∋ A} ->
lda (app (wk Vf) (var x)) ≡ Vf
{-
β-case :
η-case :
β-ret :
η-ret :
-}
-- Propositional truncation:
-- squash : ∀ {v α Ξ Γ A} -> (M N : Tm {v} {α} {Ξ} Γ A) -> (p q : M ≡ N) -> p ≡ q
squash : ∀ {v α Ξ Γ A} -> isSet (Tm {v} {α} {Ξ} Γ A)
-- Quotient the ordering:
ord-squash : ∀ {v α Γ c}
(M : Tm {v} {α} {Empty} (ctx-endpt l Γ) (ty-left c))
(N : Tm {v} {α} {Empty} (ctx-endpt r Γ) (ty-right c)) ->
(leq leq' : Tm {v} {α} {Full} Γ c) ->
(tm-endpt l {Γ} {c} leq ≡ M) -> (tm-endpt r {Γ} {c} leq ≡ N) ->
(tm-endpt l {Γ} {c} leq' ≡ M) -> (tm-endpt r {Γ} {c} leq' ≡ N) ->
leq ≡ leq'
_⊑tm_ : ∀ {v α Γ A B} {c : A ⊑ B} ->
Tm {v} {α} {Empty} (ctx-endpt l Γ) A -> Tm {v} {α} {Empty} (ctx-endpt r Γ) B -> Type
_⊑tm_ {v} {α} {Γ} {A} {B} {c , eq1 , eq2} M N = Σ[ M⊑N ∈ Tm {v} {α} {Full} Γ c ]
((tm-endpt l {Γ} {c} M⊑N ≡ subst (Tm (ctx-endpt l Γ)) (sym eq1) M) ×
(tm-endpt r {Γ} {c} M⊑N ≡ subst (Tm (ctx-endpt r Γ)) (sym eq2) N))
-- Recall:
-- tm-endpt : (p : Interval) -> {Γ : Ctx Full} -> {c : Ty Full} ->
-- Tm {Full} Γ c ->
-- Tm {Empty} (ctx-endpt p Γ) (ty-endpt p c)
tm-endpt p {Γ} {c} (var x) = var (∋-ctx-endpt p x)
tm-endpt p {Γ} {(_ ⇀ cout)} (lda M1⊑M2) = lda (tm-endpt p {(_ :: Γ)} {cout} M1⊑M2)
tm-endpt p {Γ} {cout} (app {S = cin} M1⊑M2 N1⊑N2) =
app (tm-endpt p {Γ} {(cin ⇀ cout)} M1⊑M2) (tm-endpt p {Γ} {cin} N1⊑N2)
tm-endpt p {Γ} {c} err = err
tm-endpt p {Γ} zro = zro
tm-endpt p {Γ} (suc M1⊑M2) = suc (tm-endpt p {Γ} {nat} M1⊑M2)
-- Term-precision-only rules
--tm-endpt l .(ctx-refl _) c (err-bot .c N) = err
--tm-endpt r .(ctx-refl _) c (err-bot {Γ} .c N) =
-- transport (sym (λ i → Tm (ctx-endpt-refl {Γ} r i) (ty-right c))) N
-- Goal: Tm Γ (ty-right c) ≡ Tm (ctx-endpt r (ctx-refl Γ)) (ty-right c)
tm-endpt p (err-bot B x) = {!!}
tm-endpt l {Γ} (trans c _ _ _ _) = {!!}
tm-endpt r {Γ} (trans c _ _ _ _) = {!!}
-- Truncation
tm-endpt p {Γ} {c} (squash M1⊑M2 M1'⊑M2' eq eq' i j) =
squash (tm-endpt p {Γ} {c} M1⊑M2) (tm-endpt p {Γ} {c} M1'⊑M2')
(λ k → tm-endpt p {Γ} {c} (eq k)) (λ k → tm-endpt p {Γ} {c} (eq' k)) i j
tm-endpt p (ret x) = {!!}
tm-endpt p (bind x x₁) = {!!}
tm-endpt p (inj-nat x) = {!!}
tm-endpt p (inj-arr-ext x) = {!!}
tm-endpt p (inj-arr-int x) = {!!}
tm-endpt p (case-nat x x₁) = {!!}
tm-endpt p (case-arr-ext x x₁) = {!!}
tm-endpt p (case-arr-int x x₁) = {!!}
tm-endpt p (ord-squash x x₁ x₂ x₃ x₄ x₅ x₆ x₇ i) = {!!}
{-
-- Substitution and Renaming using De Bruijn framework
module DB_Base = Syntax.DeBruijnCommon (Ty Empty) (Ctx Empty) · (_::_) _∋_ vz vs (Tm Ext {Empty})
open DB_Base -- Brings in definitions of ProofT, Kit, Subst
-- Lift function --
lft : {Δ Γ : Ctx Empty} {S : Ty Empty} {_◈_ : ProofT}
(K : Kit _◈_) (τ : Subst Δ Γ _◈_) {T : Ty Empty} (h : (Γ :: S) ∋ T) -> (Δ :: S) ◈ T
lft (kit vr tm wk) τ vz = vr vz
lft (kit vr tm wk) τ (vs x) = wk (τ x)
-- Note that the type of lft can also be written as (Subst Δ Γ _◈_) -> (Subst (Δ ∷ S) (Γ ∷ S) _◈_)
-- Traversal function --
trav : {Δ Γ : Ctx Empty} {T : Ty Empty} {_◈_ : ProofT} (K : Kit _◈_)
(τ : Subst Δ Γ _◈_) (t : Tm Ext Γ T) -> Tm Ext Δ T
trav (kit vr tm wk) τ (var x) = tm (τ x)
trav K τ (lda t') = (lda (trav K (lft K τ) t'))
trav K τ (app f s) = (app (trav K τ f) (trav K τ s))
trav K τ (up deriv t') = (up deriv (trav K τ t'))
trav K τ (dn deriv t') = (dn deriv (trav K τ t'))
trav K τ err = err
trav K τ zro = zro
trav K τ (suc t') = (suc (trav K τ t'))
open DB_Base.DeBruijn trav var
-- Gives us renaming and substitution
-- Single substitution
-- N[M/x]
_[_] : ∀ {Γ A B}
→ Tm Ext (Γ :: B) A
→ Tm Ext Γ B
→ Tm Ext Γ A
_[_] {Γ} {A} {B} N M = {!!} -- sub Γ (Γ :: B) σ A N
where
σ : Subst Γ (Γ :: B) (Tm Ext) -- i.e., {T : Ty} → Γ :: B ∋ T → Tm Γ T
σ vz = M
σ (vs x) = var x
-}
This diff is collapsed.
Click to expand it.
formalizations/guarded-cubical/Syntax/Types.agda
0 → 100644
+
169
−
0
View file @
e24a9c26
{-# OPTIONS --cubical --rewriting --guarded #-}
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --lossy-unification #-}
open import Common.Later hiding (next)
module Syntax.Types where
open import Cubical.Foundations.Prelude renaming (comp to compose)
open import Cubical.Data.Nat hiding (_·_) renaming (ℕ to Nat)
open import Cubical.Relation.Nullary
open import Cubical.Foundations.Function
open import Cubical.Data.Prod hiding (map)
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.List
using (List ; length ; map ; _++_ ; cons-inj₁ ; cons-inj₂)
renaming ([] to · ; _∷_ to _::_)
open import Cubical.Data.Empty renaming (rec to exFalso)
import Syntax.DeBruijnCommon
private
variable
ℓ : Level
-- Types --
data Interval : Type where
l r : Interval
data IntExt : Type where
Int Ext : IntExt
data iCtx : Type where
Empty : iCtx
Full : iCtx
private
variable
α : IntExt
data Ty : {α : IntExt} -> iCtx -> Type
ty-endpt : ∀ {α} -> Interval -> Ty {α} Full -> Ty {α} Empty
data Ty where
nat : ∀ {α Ξ} -> Ty {α} Ξ
dyn : ∀ {α Ξ} -> Ty {α} Ξ
_⇀_ : ∀ {α Ξ} -> Ty {α} Ξ -> Ty {α} Ξ -> Ty {α} Ξ
inj-nat : ∀ {α} -> Ty {α} Full
inj-arr : ∀ {α} -> Ty {α} Full
comp : ∀ {α} -> (c : Ty {α} Full) -> (d : Ty {α} Full) ->
(ty-endpt l c ≡ ty-endpt r d) -> Ty {α} Full
-- order-set : isSet (Ty Full)
▹ : ∀ {Ξ} -> Ty {Int} Ξ -> Ty {Int} Ξ
ty-endpt p nat = nat
ty-endpt p dyn = dyn
ty-endpt p (cin ⇀ cout) = ty-endpt p cin ⇀ ty-endpt p cout
ty-endpt l inj-nat = nat
ty-endpt r inj-nat = dyn
ty-endpt l inj-arr = (dyn ⇀ dyn) -- inj-arr : (dyn -> dyn) ⊑ dyn
ty-endpt r inj-arr = dyn
ty-endpt l (comp c d _) = ty-endpt l d
ty-endpt r (comp c d _) = ty-endpt r c
ty-endpt p (▹ A) = ▹ (ty-endpt p A)
_[_/i] : ∀ {α} -> Ty {α} Full -> Interval -> Ty {α} Empty
c [ p /i] = ty-endpt p c
ty-left : ∀ {α} -> Ty {α} Full -> Ty Empty
ty-left = ty-endpt l
ty-right : ∀ {α} -> Ty {α} Full -> Ty Empty
ty-right = ty-endpt r
CompTyRel : ∀ {α} -> Type
CompTyRel {α} = Σ (Ty {α} Full × Ty Full)
λ { (c' , c) -> (ty-left c') ≡ (ty-right c) }
CompTyRel-comp : ∀ {α} -> CompTyRel {α} -> Ty Full
CompTyRel-comp ((c' , c) , pf) = comp c' c pf
CompTyRel-endpt : ∀ {α} -> Interval -> CompTyRel {α} -> Ty Full
CompTyRel-endpt l ((c , d) , _) = c
CompTyRel-endpt r ((c , d) , _) = d
-- Given a "normal" type A, view it as its reflexivity precision derivation c : A ⊑ A.
ty-refl : Ty {α} Empty -> Ty {α} Full
ty-refl nat = nat
ty-refl dyn = dyn
ty-refl (Ai ⇀ Ao) = ty-refl Ai ⇀ ty-refl Ao
ty-refl (▹ A) = ▹ (ty-refl A)
ty-endpt-refl : {A : Ty {α} Empty} -> (p : Interval) -> ty-endpt p (ty-refl A) ≡ A
ty-endpt-refl {_} {nat} p = refl
ty-endpt-refl {_} {dyn} p = refl
ty-endpt-refl {_} {A ⇀ B} p = cong₂ _⇀_ (ty-endpt-refl p) (ty-endpt-refl p)
ty-endpt-refl {_} {▹ A} p = cong ▹ (ty-endpt-refl p)
_⊑_ : Ty {α} Empty -> Ty Empty -> Type
A ⊑ B = Σ[ c ∈ Ty Full ] ((ty-left c ≡ A) × (ty-right c ≡ B))
-- ############### Contexts ###############
Ctx : ∀ {α : IntExt} -> iCtx -> Type
Ctx {α} Ξ = List (Ty {α} Ξ)
-- Endpoints of a full context
ctx-endpt : (p : Interval) -> Ctx {α} Full -> Ctx Empty
ctx-endpt p = map (ty-endpt p)
CompCtx : (Δ Γ : Ctx {α} Full) -> (pf : ctx-endpt l Δ ≡ ctx-endpt r Γ) ->
Ctx {α} Full
CompCtx Δ Γ pf = {!!}
-- "Contains" relation stating that a context Γ contains a type T
data _∋_ : ∀ {Ξ} -> Ctx {α} Ξ -> Ty {α} Ξ -> Set where
vz : ∀ {Ξ Γ S} -> _∋_ {α} {Ξ} (S :: Γ) S
vs : ∀ {Ξ Γ S T} (x : _∋_ {α} {Ξ} Γ T) -> (S :: Γ ∋ T)
infix 4 _∋_
∋-ctx-endpt : {Γ : Ctx {α} Full} {c : Ty Full} -> (p : Interval) ->
(Γ ∋ c) -> ((ctx-endpt p Γ) ∋ (ty-endpt p c))
∋-ctx-endpt p vz = vz
∋-ctx-endpt p (vs Γ∋c) = vs (∋-ctx-endpt p Γ∋c)
-- View a "normal" typing context Γ as a type precision context where the derivation
-- corresponding to each type A in Γ is just the reflexivity precision derivation A ⊑ A.
ctx-refl : Ctx {α} Empty -> Ctx Full
ctx-refl = map ty-refl
--ctx-refl · = ·
--ctx-refl (A :: Γ) = ty-refl A :: ctx-refl Γ
-- For a given typing context, the endpoints of the corresponding reflexivity precision
-- context are the typing context itself.
ctx-endpt-refl : {Γ : Ctx {α} Empty} -> (p : Interval) -> ctx-endpt p (ctx-refl Γ) ≡ Γ
ctx-endpt-refl {_} {·} p = refl
ctx-endpt-refl {_} {A :: Γ} p = cong₂ _::_ (ty-endpt-refl p) (ctx-endpt-refl p)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment