Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
cc79c4e7
Commit
cc79c4e7
authored
1 year ago
by
Max New
Browse files
Options
Downloads
Patches
Plain Diff
outline of normalization
parent
ba544618
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Syntax/Normalization.agda
+241
-0
241 additions, 0 deletions
formalizations/guarded-cubical/Syntax/Normalization.agda
with
241 additions
and
0 deletions
formalizations/guarded-cubical/Syntax/Normalization.agda
0 → 100644
+
241
−
0
View file @
cc79c4e7
module Syntax.Normalization where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Data.List
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
open import Syntax.IntensionalTerms
open import Syntax.IntensionalTerms.Induction
open import Syntax.Types
private
variable
Δ Γ Θ Z Δ' Γ' Θ' Z' : Ctx
R S T U R' S' T' U' : Ty
γ γ' γ'' : Subst Δ Γ
δ δ' δ'' : Subst Θ Δ
θ θ' θ'' : Subst Z Θ
V V' V'' : Val Γ S
M M' M'' N N' : Comp Γ S
E E' E'' F F' : EvCtx Γ S T
ℓ ℓ' ℓ'' ℓ''' ℓ'''' : Level
TySem = Ty → Type (ℓ-suc ℓ-zero)
SemSubst : (V : TySem) → (Γ : Ctx) → Type (ℓ-suc ℓ-zero)
SemSubst V [] = Unit*
SemSubst V (R ∷ Γ) = SemSubst V Γ × V R
data Var : ∀ (Γ : Ctx) (R : Ty) → Type (ℓ-suc ℓ-zero) where
Zero : Var (R ∷ Γ) R
Succ : Var Γ R → Var (S ∷ Γ) R
lookup : {V : TySem} → SemSubst V Γ → Var Γ R → V R
lookup γ Zero = γ .snd
lookup γ (Succ x) = lookup (γ .fst) x
Ren : ∀ (Δ Γ : Ctx) → Type (ℓ-suc ℓ-zero)
Ren Δ = SemSubst (Var Δ)
_[_]rvar : Var Δ R → Ren Θ Δ → Var Θ R
Zero [ ρ ]rvar = ρ .snd
Succ x [ ρ ]rvar = x [ ρ .fst ]rvar
wkRen : Ren Θ Δ → Ren (R ∷ Θ) Δ
wkRen {Δ = []} ρ = tt*
wkRen {Δ = R ∷ Δ} ρ = wkRen (ρ .fst) , Succ (ρ .snd)
↑ren : Ren Θ Δ → Ren (S ∷ Θ) (S ∷ Δ)
↑ren ρ = wkRen ρ , Zero
idRen : Ren Γ Γ
idRen {Γ = []} = tt*
idRen {Γ = R ∷ Γ} = (wkRen idRen) , Zero
data VNfm (Γ : Ctx) : ∀ (R : Ty) → Type (ℓ-suc ℓ-zero)
data CNfm (Γ : Ctx) (R : Ty) : Type (ℓ-suc ℓ-zero)
data CNeu (Γ : Ctx) (R : Ty) : Type (ℓ-suc ℓ-zero)
data CBnd (Γ : Ctx) (R : Ty) : Type (ℓ-suc ℓ-zero)
data ENfm (Γ : Ctx) (R : Ty) (S : Ty) : Type (ℓ-suc ℓ-zero)
SNfm : ∀ (Δ : Ctx) (Γ : Ctx) → Type (ℓ-suc ℓ-zero)
SNfm Δ = SemSubst (VNfm Δ)
data VNfm Γ where
var : Var Γ R → VNfm Γ R
zro : VNfm Γ nat
suc : VNfm Γ nat → VNfm Γ nat
lda : CNfm (S ∷ Γ) R → VNfm Γ (S ⇀ R)
injN : VNfm Γ nat → VNfm Γ dyn
injArr : VNfm Γ (dyn ⇀ dyn) → VNfm Γ dyn
mapDyn : VNfm Γ dyn → VNfm [ nat ] nat → VNfm [ dyn ⇀ dyn ] (dyn ⇀ dyn) → VNfm Γ dyn
data CNfm Γ R where
ret : VNfm Γ R → CNfm Γ R
err : CNfm Γ R
tick : CNfm Γ R → CNfm Γ R
bnd : CBnd Γ R → CNfm Γ R
-- neu : CNeu Γ R → CNfm Γ R
data CBnd Γ R where
bind : CNeu Γ S → CNfm (S ∷ Γ) R → CBnd Γ R
data CNeu Γ R where
app : VNfm Γ (S ⇀ R) → VNfm Γ S → CNeu Γ R
matchNat : VNfm Γ nat → CNfm Γ R → CNfm (nat ∷ Γ) R
→ CNeu Γ R
matchDyn : VNfm Γ dyn → CNfm (nat ∷ Γ) R → CNfm (dyn ⇀ dyn ∷ Γ) R → CNeu Γ R
unVar : Var Γ R → Val Γ R
unVar Zero = var
unVar (Succ x) = unVar x [ wk ]v
unVNfm : VNfm Γ R → Val Γ R
unCNfm : CNfm Γ R → Comp Γ R
unCNeu : CNeu Γ R → Comp Γ R
unVNfm (var x) = unVar x
unVNfm zro = zro [ !s ]v
unVNfm (suc V) = suc [ !s ,s unVNfm V ]v
unVNfm (lda M[x]) = lda (unCNfm M[x])
unVNfm (injN V) = injectN [ !s ,s unVNfm V ]v
unVNfm (injArr V) = injectArr [ !s ,s unVNfm V ]v
unVNfm (mapDyn V V₁ V₂) = mapDyn (unVNfm V₁) (unVNfm V₂) [ !s ,s unVNfm V ]v
unCNfm (ret V) = ret [ !s ,s unVNfm V ]c
unCNfm err = err [ !s ]c
unCNfm (tick M) = tick (unCNfm M)
unCNfm (bnd (bind M N[x])) = bind (unCNfm N[x]) [ unCNeu M ]∙
unCNeu (app V V') = app [ !s ,s unVNfm V ,s unVNfm V' ]c
unCNeu (matchNat V M N) = matchNat (unCNfm M) (unCNfm N) [ ids ,s unVNfm V ]c
unCNeu (matchDyn V M N) = matchDyn (unCNfm M) (unCNfm N) [ ids ,s unVNfm V ]c
unSNfm : SNfm Δ Γ → Subst Δ Γ
unSNfm {Γ = []} γ = !s
unSNfm {Γ = x ∷ Γ} γ = unSNfm (γ .fst) ,s unVNfm (γ .snd)
-- Action of renaming
_[_]rs : SNfm Δ Γ → Ren Θ Δ → SNfm Θ Γ
_[_]rv : VNfm Δ R → Ren Θ Δ → VNfm Θ R
_[_]rc : CNfm Δ R → Ren Θ Δ → CNfm Θ R
_[_]rneu : CNeu Δ R → Ren Θ Δ → CNeu Θ R
_[_]rs {Γ = []} γ ρ = tt*
_[_]rs {Γ = x ∷ Γ} γ ρ = (γ .fst [ ρ ]rs) , (γ .snd [ ρ ]rv)
lda M [ ρ ]rv = lda (M [ ↑ren ρ ]rc)
zro [ ρ ]rv = zro
suc V [ ρ ]rv = suc (V [ ρ ]rv)
injN V [ ρ ]rv = injN (V [ ρ ]rv)
injArr V [ ρ ]rv = injArr (V [ ρ ]rv)
mapDyn V V₁ V₂ [ ρ ]rv = mapDyn (V [ ρ ]rv) V₁ V₂
ret V [ ρ ]rc = ret (V [ ρ ]rv)
err [ ρ ]rc = err
tick M [ ρ ]rc = tick (M [ ρ ]rc)
bnd (bind M N[x]) [ ρ ]rc = bnd (bind (M [ ρ ]rneu) (N[x] [ ↑ren ρ ]rc))
app V V' [ ρ ]rneu = app (V [ ρ ]rv) (V' [ ρ ]rv)
matchNat V M N [ ρ ]rneu = matchNat (V [ ρ ]rv) (M [ ρ ]rc) (N [ ↑ren ρ ]rc)
matchDyn V M N [ ρ ]rneu = matchDyn (V [ ρ ]rv) (M [ ↑ren ρ ]rc) (N [ ↑ren ρ ]rc)
-- Action of substitution
wkSubst : SNfm Θ Δ → SNfm (R ∷ Θ) Δ
wkSubst δ = δ [ wkRen idRen ]rs
idsnf : SNfm Γ Γ
idsnf {Γ = []} = tt*
idsnf {Γ = R ∷ Γ} = wkSubst idsnf , var Zero
wkS : SNfm (R ∷ Γ) Γ
wkS = wkSubst idsnf
↑snf : SNfm Θ Δ → SNfm (S ∷ Θ) (S ∷ Δ)
↑snf δ = (δ [ wkRen idRen ]rs) , (var Zero)
_[_]snf : SNfm Δ Γ → SNfm Θ Δ → SNfm Θ Γ
_[_]vnf : VNfm Γ R → SNfm Δ Γ → VNfm Δ R
_[_]cnf : CNfm Γ R → SNfm Δ Γ → CNfm Δ R
_[_]snf {Γ = []} γ δ = tt*
_[_]snf {Γ = R ∷ Γ} γ δ = (γ .fst [ δ ]snf ) , (γ .snd [ δ ]vnf)
var x [ γ ]vnf = lookup γ x
zro [ γ ]vnf = zro
suc V [ γ ]vnf = suc (V [ γ ]vnf)
injN V [ γ ]vnf = injN (V [ γ ]vnf)
injArr V [ γ ]vnf = injArr (V [ γ ]vnf)
mapDyn V V₁ V₂ [ γ ]vnf = mapDyn (V [ γ ]vnf) V₁ V₂
lda M [ γ ]vnf = lda (M [ ↑snf γ ]cnf)
M [ γ ]cnf = {!!}
bindNF : CNfm Γ S → CNfm (S ∷ Γ) R → CNfm Γ R
bindNF (ret x) N[x] = N[x] [ idsnf , x ]cnf
bindNF err N[x] = err
bindNF (tick M) N[x] = tick (bindNF M N[x])
bindNF (bnd (bind M P[y])) N[x] = bnd (bind M (bindNF P[y] (N[x] [ (wkS [ wkS ]snf) , (var Zero) ]cnf)))
bindNF-correct : (M : CNfm Γ S) → (N[x] : CNfm (S ∷ Γ) R)
→ unCNfm (bindNF M N[x]) ≡ (bind (unCNfm N[x]) [ unCNfm M ]∙)
bindNF-correct (ret x) N[x] = {!!}
bindNF-correct err N[x] = {!!}
bindNF-correct (tick M) N[x] = {!!}
bindNF-correct (bnd (bind M P[y])) N[x] = {!!}
module Sem = SynInd
(λ γ → ∥ fiber unSNfm γ ∥₁ , squash₁)
(λ V → ∥ fiber unVNfm V ∥₁ , squash₁)
(λ M → ∥ fiber unCNfm M ∥₁ , squash₁)
(λ {Γ}{R}{S} E →
(∀ (M : CNfm Γ R) → ∥ (Σ[ E[M] ∈ CNfm Γ S ] unCNfm E[M] ≡ E [ unCNfm M ]∙) ∥₁)
, isPropΠ λ _ → squash₁)
open SynInd.indCases
cases : Sem.indCases
cases .indIds = {!!}
cases .ind∘s = {!!}
cases .ind!s = {!!}
cases .ind,s = {!!}
cases .indwk = {!!}
cases .ind[]v = {!!}
cases .indVar = {!!}
cases .indZero = {!!}
cases .indSuc = {!!}
cases .indLda = {!!}
cases .indInjN = {!!}
cases .indInjArr = {!!}
cases .indMapDyn = {!!}
cases .ind[]∙ {E = E}{M = M} ihE = rec squash₁ λ ihM →
rec squash₁ (λ ihE[M] → ∣ ihE[M] .fst , ihE[M] .snd ∙ cong (E [_]∙) (ihM .snd) ∣₁)
(ihE (ihM .fst))
cases .ind[]c = {!!}
cases .indErr = ∣ err , {!!} ∣₁
cases .indTick = rec squash₁ λ ihM →
∣ (tick (ihM .fst)) , (cong tick (ihM .snd)) ∣₁
cases .indRet = ∣ ret (var Zero) , {!!} ∣₁
cases .indApp = {!!}
cases .indMatchNat = {!!}
cases .indMatchDyn = {!!}
cases .ind∙ M = ∣ M , (sym plugId) ∣₁
cases .ind∘E M ihE ihF = {!!}
cases .ind[]e ihE = {!rec squash₁ ?!}
cases .indbind {M = M} = rec (isPropΠ λ _ → squash₁) λ ihN[x] ihM →
∣ (bindNF ihM (ihN[x] .fst)) ,
bindNF-correct ihM (ihN[x] .fst) ∙ cong (_[ unCNfm ihM ]∙) (cong bind (ihN[x] .snd))
∣₁
readOut : ∥ fiber unCNfm M ∥₁ → singl M
readOut = rec isPropSingl (λ x → (unCNfm (x .fst)) , (sym (x .snd)))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment