Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
a088f583
Commit
a088f583
authored
2 years ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Show that L is a monad
parent
afcc7d41
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/ErrorDomains.agda
+178
-8
178 additions, 8 deletions
formalizations/guarded-cubical/ErrorDomains.agda
with
178 additions
and
8 deletions
formalizations/guarded-cubical/ErrorDomains.agda
+
178
−
8
View file @
a088f583
...
...
@@ -7,8 +7,14 @@ module ErrorDomains(k : Clock) where
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Poset
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
private
variable
l : Level
...
...
@@ -47,16 +53,180 @@ record ErrorDomain : Set₁ where
θ : MonFun (▸'' X) X
data L℧₀ (X : Set) : Set where
η₀ : X → L℧₀ X
℧ : L℧₀ X
θ₀ : ▹ (L℧₀ X) → L℧₀ X
data L℧ (X : Set) : Set where
η : X → L℧ X
℧ : L℧ X
θ : ▹ (L℧ X) → L℧ X
-- Showing that L is a monad
mapL' : (A -> B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B
mapL' f map_rec (η x) = η (f x)
mapL' f map_rec ℧ = ℧
mapL' f map_rec (θ l_la) = θ (map_rec ⊛ l_la)
mapL : (A -> B) -> L℧ A -> L℧ B
mapL f = fix (mapL' f)
mapL-comp : {A B C : Set} (g : B -> C) (f : A -> B) (x : L℧ A) ->
mapL g (mapL f x) ≡ mapL (g ∘ f) x
mapL-comp g f x = {!!}
ret : {X : Set} -> X -> L℧ X
ret = η
-- rename to ext?
bind' : ∀ {A B} -> (A -> L℧ B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B
bind' f bind_rec (η x) = f x
bind' f bind_rec ℧ = ℧
bind' f bind_rec (θ l_la) = θ (bind_rec ⊛ l_la)
-- fix : ∀ {l} {A : Set l} → (f : ▹ k , A → A) → A
bind : L℧ A -> (A -> L℧ B) -> L℧ B
bind {A} {B} la f = (fix (bind' f)) la
ext : (A -> L℧ B) -> L℧ A -> L℧ B
ext f la = bind la f
bind-eta : ∀ (a : A) (f : A -> L℧ B) -> bind (η a) f ≡ f a
bind-eta a f =
fix (bind' f) (ret a) ≡⟨ (λ i → fix-eq (bind' f) i (ret a)) ⟩
(bind' f) (next (fix (bind' f))) (ret a) ≡⟨ refl ⟩
f a ∎
bind-err : (f : A -> L℧ B) -> bind ℧ f ≡ ℧
bind-err f =
fix (bind' f) ℧ ≡⟨ (λ i → fix-eq (bind' f) i ℧) ⟩
(bind' f) (next (fix (bind' f))) ℧ ≡⟨ refl ⟩
℧ ∎
{-
bind-theta : (f : A -> L℧ B)
(l : ▹ (L℧ A)) ->
(fix (bind' f)) (θ l) ≡ θ (fix (bind' f) <$> l)
bind-theta f l =
(fix (bind' f)) (θ l) ≡⟨ (λ i → fix-eq (bind' f) i (θ l)) ⟩
(bind' f) (next (fix (bind' f))) (θ l) ≡⟨ refl ⟩
θ (fix (bind' f) <$> l) ∎
-}
bind-theta : (f : A -> L℧ B)
(l : ▹ (L℧ A)) ->
bind (θ l) f ≡ θ (ext f <$> l)
bind-theta f l =
(fix (bind' f)) (θ l) ≡⟨ (λ i → fix-eq (bind' f) i (θ l)) ⟩
(bind' f) (next (fix (bind' f))) (θ l) ≡⟨ refl ⟩
θ (fix (bind' f) <$> l) ∎
id : {A : Set} -> A -> A
id x = x
monad-unit-l : ∀ (a : A) (f : A -> L℧ B) -> bind (ret a) f ≡ f a
monad-unit-l = bind-eta
L℧ : Predomain → ErrorDomain
L℧ X = record { X = L℧X ; ℧ = ℧ ; ℧⊥ = {!!} ; θ = record { f = θ₀ ; isMon = {!!} } }
monad-unit-r : (la : L℧ A) -> bind la ret ≡ la
monad-unit-r = fix lem
where
L℧X : Predomain
L℧X = L℧₀ (X .fst) , {!!}
lem : ▹ ((la : L℧ A) -> bind la ret ≡ la) ->
(la : L℧ A) -> bind la ret ≡ la
lem IH (η x) = monad-unit-l x ret
lem IH ℧ = bind-err ret
lem IH (θ x) = fix (bind' ret) (θ x)
≡⟨ bind-theta ret x ⟩
θ (fix (bind' ret) <$> x)
≡⟨ refl ⟩
θ ((λ la -> bind la ret) <$> x)
-- we get access to a tick since we're under a theta
≡⟨ (λ i → θ λ t → IH t (x t) i) ⟩
θ (id <$> x)
≡⟨ refl ⟩
θ x ∎
-- Should we import this?
-- _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> (A -> C)
-- (g ∘ f) x = g (f x)
map-comp : {A B C : Set} (g : B -> C) (f : A -> B) (x : ▹_,_ k _) ->
g <$> (f <$> x) ≡ (g ∘ f) <$> x
map-comp g f x = -- could just say refl for the whole thing
map▹ g (map▹ f x) ≡⟨ refl ⟩
(λ α -> g ((map▹ f x) α)) ≡⟨ refl ⟩
(λ α -> g ((λ β -> f (x β)) α)) ≡⟨ refl ⟩
(λ α -> g (f (x α))) ≡⟨ refl ⟩
map▹ (g ∘ f) x ∎
monad-assoc-def =
{A B C : Set} ->
(f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) ->
bind (bind la f) g ≡ bind la (λ x -> bind (f x) g)
monad-assoc : monad-assoc-def
monad-assoc = fix lem
where
lem : ▹ monad-assoc-def -> monad-assoc-def
-- Goal: bind (bind (η x) f) g ≡ bind (η x) (λ y → bind (f y) g)
lem IH f g (η x) =
bind ((bind (η x) f)) g ≡⟨ (λ i → bind (bind-eta x f i) g) ⟩
bind (f x) g ≡⟨ sym (bind-eta x (λ y -> bind (f y) g)) ⟩
bind (η x) (λ y → bind (f y) g) ∎
-- Goal: bind (bind ℧ f) g ≡ bind ℧ (λ x → bind (f x) g)
lem IH f g ℧ =
bind (bind ℧ f) g ≡⟨ (λ i → bind (bind-err f i) g) ⟩
bind ℧ g ≡⟨ bind-err g ⟩
℧ ≡⟨ sym (bind-err (λ x -> bind (f x) g)) ⟩
bind ℧ (λ x → bind (f x) g) ∎
-- Goal: bind (bind (θ x) f) g ≡ bind (θ x) (λ y → bind (f y) g)
-- IH: ▹ (bind (bind la f) g ≡ bind la (λ x -> bind (f x) g))
lem IH f g (θ x) =
bind (bind (θ x) f) g
≡⟨ (λ i → bind (bind-theta f x i) g) ⟩
bind (θ (ext f <$> x)) g
≡⟨ bind-theta g (ext f <$> x) ⟩
-- we can put map-comp in the hole here and refine (but it's wrong)
θ ( ext g <$> (ext f <$> x) )
≡⟨ refl ⟩
θ ( (ext g ∘ ext f) <$> x )
≡⟨ refl ⟩
θ ( ((λ lb -> bind lb g) ∘ (λ la -> bind la f)) <$> x )
≡⟨ refl ⟩ -- surprised that this works
θ ( (λ la -> bind (bind la f) g) <$> x )
≡⟨ (λ i → θ (λ t → IH t f g (x t) i)) ⟩
θ ( (λ la -> bind la (λ y -> bind (f y) g)) <$> x )
≡⟨ refl ⟩
θ ( (ext (λ y -> bind (f y) g)) <$> x )
≡⟨ sym (bind-theta ((λ y -> bind (f y) g)) x) ⟩
bind (θ x) (λ y → bind (f y) g) ∎
-- bind (θ ( (λ la -> bind la f) <$> x)) g ≡⟨ {!!} ⟩
-- | TODO:
-- | 1. monotone monad structure
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment