diff --git a/formalizations/guarded-cubical/ErrorDomains.agda b/formalizations/guarded-cubical/ErrorDomains.agda
index 7772fc346e02e9662af10381161b54820575b45b..92e8d882ed11eaecdf7d0a839f7984fd4524aaa7 100644
--- a/formalizations/guarded-cubical/ErrorDomains.agda
+++ b/formalizations/guarded-cubical/ErrorDomains.agda
@@ -7,8 +7,14 @@ module ErrorDomains(k : Clock) where
 open import Cubical.Relation.Binary
 open import Cubical.Relation.Binary.Poset
 
+open import Cubical.Foundations.Prelude
+open import Cubical.Foundations.Function
+open import Cubical.Foundations.Transport
+
 open import Cubical.Data.Sigma
 
+open import Cubical.Data.Nat
+
 private
   variable
     l : Level
@@ -47,16 +53,180 @@ record ErrorDomain : Set₁ where
 
     θ : MonFun (▸'' X) X
 
-data L℧₀ (X : Set) : Set where
-  η₀ : X → L℧₀ X
-  ℧ : L℧₀ X
-  θ₀ : ▹ (L℧₀ X) → L℧₀ X
+data L℧ (X : Set) : Set where
+  η : X → L℧ X
+  ℧ : L℧ X
+  θ : ▹ (L℧ X) → L℧ X
+
+
+-- Showing that L is a monad
+
+mapL' : (A -> B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B
+mapL' f map_rec (η x) = η (f x)
+mapL' f map_rec ℧ = ℧
+mapL' f map_rec (θ l_la) = θ (map_rec ⊛ l_la)
+
+mapL : (A -> B) -> L℧ A -> L℧ B
+mapL f = fix (mapL' f)
+
+mapL-comp : {A B C : Set} (g : B -> C) (f : A -> B) (x : L℧ A) ->
+ mapL g (mapL f x) ≡ mapL (g ∘ f) x
+mapL-comp g f x = {!!}
+
+
+
+ret : {X : Set} -> X -> L℧ X
+ret = η
+
+-- rename to ext?
+bind' : ∀ {A B} -> (A -> L℧ B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B
+bind' f bind_rec (η x) = f x
+bind' f bind_rec ℧ = ℧
+bind' f bind_rec (θ l_la) = θ (bind_rec ⊛ l_la)
+
+
+-- fix : ∀ {l} {A : Set l} → (f : ▹ k , A → A) → A
+bind : L℧ A -> (A -> L℧ B) -> L℧ B
+bind {A} {B} la f = (fix (bind' f)) la
+
+ext : (A -> L℧ B) -> L℧ A -> L℧ B
+ext f la = bind la f
+
+
+
+bind-eta : ∀ (a : A) (f : A -> L℧ B) -> bind (η a) f ≡ f a
+bind-eta a f =
+  fix (bind' f) (ret a) ≡⟨ (λ i → fix-eq (bind' f) i (ret a)) ⟩
+  (bind' f) (next (fix (bind' f))) (ret a) ≡⟨ refl ⟩
+  f a ∎
+
+bind-err : (f : A -> L℧ B) -> bind ℧ f ≡ ℧
+bind-err f =
+  fix (bind' f) ℧ ≡⟨ (λ i → fix-eq (bind' f) i ℧) ⟩
+  (bind' f) (next (fix (bind' f))) ℧ ≡⟨ refl ⟩
+  ℧ ∎
+
+{-
+bind-theta : (f : A -> L℧ B)
+             (l : ▹ (L℧ A)) ->
+             (fix (bind' f)) (θ l) ≡ θ (fix (bind' f) <$> l)
+bind-theta f l =
+  (fix (bind' f)) (θ l)                    ≡⟨ (λ i → fix-eq (bind' f) i (θ l)) ⟩
+  (bind' f) (next (fix (bind' f))) (θ l)   ≡⟨ refl ⟩
+  θ (fix (bind' f) <$> l) ∎
+-}
+
+bind-theta : (f : A -> L℧ B)
+             (l : ▹ (L℧ A)) ->
+             bind (θ l) f ≡ θ (ext f <$> l)
+bind-theta f l =
+  (fix (bind' f)) (θ l)                    ≡⟨ (λ i → fix-eq (bind' f) i (θ l)) ⟩
+  (bind' f) (next (fix (bind' f))) (θ l)   ≡⟨ refl ⟩
+  θ (fix (bind' f) <$> l) ∎
+
+
+id : {A : Set} -> A -> A
+id x = x
+
+
+
+monad-unit-l : ∀ (a : A) (f : A -> L℧ B) -> bind (ret a) f ≡ f a
+monad-unit-l = bind-eta
 
-L℧ : Predomain → ErrorDomain
-L℧ X = record { X = L℧X ; ℧ = ℧ ; ℧⊥ = {!!} ; θ = record { f = θ₀ ; isMon = {!!} } }
+monad-unit-r : (la : L℧ A) -> bind la ret ≡ la
+monad-unit-r = fix lem
   where
-    L℧X : Predomain
-    L℧X = L℧₀ (X .fst) , {!!}
+    lem : ▹ ((la : L℧ A) -> bind la ret ≡ la) ->
+          (la : L℧ A) -> bind la ret ≡ la
+    lem IH (η x) = monad-unit-l x ret
+    lem IH ℧ = bind-err ret
+    lem IH (θ x) = fix (bind' ret) (θ x)
+                     ≡⟨ bind-theta ret x ⟩
+                   θ (fix (bind' ret) <$> x)
+                     ≡⟨ refl ⟩
+                   θ ((λ la -> bind la ret) <$> x)
+                     -- we get access to a tick since we're under a theta
+                     ≡⟨ (λ i → θ λ t → IH t (x t) i) ⟩
+                   θ (id <$> x)
+                     ≡⟨ refl ⟩
+                   θ x ∎
+
+
+-- Should we import this?
+-- _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> (A -> C)
+-- (g ∘ f) x = g (f x)
+
+map-comp : {A B C : Set} (g : B -> C) (f : A -> B) (x : â–¹_,_ k _) ->
+  g <$> (f <$> x) ≡ (g ∘ f) <$> x
+map-comp g f x = -- could just say refl for the whole thing
+  map▹ g (map▹ f x)          ≡⟨ refl ⟩
+  (λ α -> g ((map▹ f x) α)) ≡⟨ refl ⟩
+  (λ α -> g ((λ β -> f (x β)) α)) ≡⟨ refl ⟩
+  (λ α -> g (f (x α))) ≡⟨ refl ⟩
+  map▹ (g ∘ f) x ∎
+
+
+monad-assoc-def =
+  {A B C : Set} ->
+  (f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) ->
+  bind (bind la f) g ≡ bind la (λ x -> bind (f x) g)
+
+monad-assoc : monad-assoc-def
+monad-assoc = fix lem
+  where
+    lem : â–¹ monad-assoc-def -> monad-assoc-def
+
+    -- Goal: bind (bind (η x) f) g ≡ bind (η x) (λ y → bind (f y) g)
+    lem IH f g (η x) =
+      bind ((bind (η x) f)) g                    ≡⟨ (λ i → bind (bind-eta x f i) g) ⟩
+      bind (f x) g                               ≡⟨ sym (bind-eta x (λ y -> bind (f y) g)) ⟩
+      bind (η x) (λ y → bind (f y) g) ∎
+
+
+    -- Goal: bind (bind ℧ f) g ≡ bind ℧ (λ x → bind (f x) g)
+    lem IH f g ℧ =
+      bind (bind ℧ f) g           ≡⟨ (λ i → bind (bind-err f i) g) ⟩
+      bind ℧ g                    ≡⟨ bind-err g ⟩
+      ℧                           ≡⟨ sym (bind-err (λ x -> bind (f x) g)) ⟩
+      bind ℧ (λ x → bind (f x) g) ∎
+
+
+    -- Goal: bind (bind (θ x) f) g ≡ bind (θ x) (λ y → bind (f y) g)
+    -- IH: ▹ (bind (bind la f) g ≡ bind la (λ x -> bind (f x) g))
+    lem IH f g (θ x) =
+       bind (bind (θ x) f) g
+                              ≡⟨ (λ i → bind (bind-theta f x i) g) ⟩
+
+       bind (θ (ext f <$> x)) g
+                              ≡⟨ bind-theta g (ext f <$> x) ⟩
+
+                                               -- we can put map-comp in the hole here and refine (but it's wrong)
+       θ ( ext g <$> (ext f <$> x) )
+                             ≡⟨ refl ⟩ 
+
+       θ ( (ext g ∘ ext f) <$> x )
+                             ≡⟨ refl ⟩
+
+       θ ( ((λ lb -> bind lb g) ∘ (λ la -> bind la f)) <$> x )
+                             ≡⟨ refl ⟩ -- surprised that this works
+
+       θ ( (λ la -> bind (bind la f) g)  <$> x )
+                             ≡⟨ (λ i → θ (λ t → IH t f g (x t) i)) ⟩
+
+       θ ( (λ la -> bind la (λ y -> bind (f y) g)) <$> x )
+                             ≡⟨ refl ⟩
+
+       θ ( (ext (λ y -> bind (f y) g)) <$> x )
+                             ≡⟨ sym (bind-theta ((λ y -> bind (f y) g)) x) ⟩
+                             
+       bind (θ x) (λ y → bind (f y) g) ∎
+
+
+
+  -- bind (θ ( (λ la -> bind la f) <$> x)) g ≡⟨ {!!} ⟩
+
+
+
 
 -- | TODO:
 -- | 1. monotone monad structure