diff --git a/formalizations/guarded-cubical/ErrorDomains.agda b/formalizations/guarded-cubical/ErrorDomains.agda index 7772fc346e02e9662af10381161b54820575b45b..92e8d882ed11eaecdf7d0a839f7984fd4524aaa7 100644 --- a/formalizations/guarded-cubical/ErrorDomains.agda +++ b/formalizations/guarded-cubical/ErrorDomains.agda @@ -7,8 +7,14 @@ module ErrorDomains(k : Clock) where open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset +open import Cubical.Foundations.Prelude +open import Cubical.Foundations.Function +open import Cubical.Foundations.Transport + open import Cubical.Data.Sigma +open import Cubical.Data.Nat + private variable l : Level @@ -47,16 +53,180 @@ record ErrorDomain : Set₠where θ : MonFun (▸'' X) X -data L℧₀ (X : Set) : Set where - η₀ : X → L℧₀ X - ℧ : L℧₀ X - θ₀ : ▹ (L℧₀ X) → L℧₀ X +data L℧ (X : Set) : Set where + η : X → L℧ X + ℧ : L℧ X + θ : ▹ (L℧ X) → L℧ X + + +-- Showing that L is a monad + +mapL' : (A -> B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B +mapL' f map_rec (η x) = η (f x) +mapL' f map_rec ℧ = ℧ +mapL' f map_rec (θ l_la) = θ (map_rec ⊛ l_la) + +mapL : (A -> B) -> L℧ A -> L℧ B +mapL f = fix (mapL' f) + +mapL-comp : {A B C : Set} (g : B -> C) (f : A -> B) (x : L℧ A) -> + mapL g (mapL f x) ≡ mapL (g ∘ f) x +mapL-comp g f x = {!!} + + + +ret : {X : Set} -> X -> L℧ X +ret = η + +-- rename to ext? +bind' : ∀ {A B} -> (A -> L℧ B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B +bind' f bind_rec (η x) = f x +bind' f bind_rec ℧ = ℧ +bind' f bind_rec (θ l_la) = θ (bind_rec ⊛ l_la) + + +-- fix : ∀ {l} {A : Set l} → (f : ▹ k , A → A) → A +bind : L℧ A -> (A -> L℧ B) -> L℧ B +bind {A} {B} la f = (fix (bind' f)) la + +ext : (A -> L℧ B) -> L℧ A -> L℧ B +ext f la = bind la f + + + +bind-eta : ∀ (a : A) (f : A -> L℧ B) -> bind (η a) f ≡ f a +bind-eta a f = + fix (bind' f) (ret a) ≡⟨ (λ i → fix-eq (bind' f) i (ret a)) ⟩ + (bind' f) (next (fix (bind' f))) (ret a) ≡⟨ refl ⟩ + f a ∎ + +bind-err : (f : A -> L℧ B) -> bind ℧ f ≡ ℧ +bind-err f = + fix (bind' f) ℧ ≡⟨ (λ i → fix-eq (bind' f) i ℧) ⟩ + (bind' f) (next (fix (bind' f))) ℧ ≡⟨ refl ⟩ + ℧ ∎ + +{- +bind-theta : (f : A -> L℧ B) + (l : ▹ (L℧ A)) -> + (fix (bind' f)) (θ l) ≡ θ (fix (bind' f) <$> l) +bind-theta f l = + (fix (bind' f)) (θ l) ≡⟨ (λ i → fix-eq (bind' f) i (θ l)) ⟩ + (bind' f) (next (fix (bind' f))) (θ l) ≡⟨ refl ⟩ + θ (fix (bind' f) <$> l) ∎ +-} + +bind-theta : (f : A -> L℧ B) + (l : ▹ (L℧ A)) -> + bind (θ l) f ≡ θ (ext f <$> l) +bind-theta f l = + (fix (bind' f)) (θ l) ≡⟨ (λ i → fix-eq (bind' f) i (θ l)) ⟩ + (bind' f) (next (fix (bind' f))) (θ l) ≡⟨ refl ⟩ + θ (fix (bind' f) <$> l) ∎ + + +id : {A : Set} -> A -> A +id x = x + + + +monad-unit-l : ∀ (a : A) (f : A -> L℧ B) -> bind (ret a) f ≡ f a +monad-unit-l = bind-eta -L℧ : Predomain → ErrorDomain -L℧ X = record { X = L℧X ; ℧ = ℧ ; ℧⊥ = {!!} ; θ = record { f = θ₀ ; isMon = {!!} } } +monad-unit-r : (la : L℧ A) -> bind la ret ≡ la +monad-unit-r = fix lem where - L℧X : Predomain - L℧X = L℧₀ (X .fst) , {!!} + lem : ▹ ((la : L℧ A) -> bind la ret ≡ la) -> + (la : L℧ A) -> bind la ret ≡ la + lem IH (η x) = monad-unit-l x ret + lem IH ℧ = bind-err ret + lem IH (θ x) = fix (bind' ret) (θ x) + ≡⟨ bind-theta ret x ⟩ + θ (fix (bind' ret) <$> x) + ≡⟨ refl ⟩ + θ ((λ la -> bind la ret) <$> x) + -- we get access to a tick since we're under a theta + ≡⟨ (λ i → θ λ t → IH t (x t) i) ⟩ + θ (id <$> x) + ≡⟨ refl ⟩ + θ x ∎ + + +-- Should we import this? +-- _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> (A -> C) +-- (g ∘ f) x = g (f x) + +map-comp : {A B C : Set} (g : B -> C) (f : A -> B) (x : ▹_,_ k _) -> + g <$> (f <$> x) ≡ (g ∘ f) <$> x +map-comp g f x = -- could just say refl for the whole thing + map▹ g (map▹ f x) ≡⟨ refl ⟩ + (λ α -> g ((map▹ f x) α)) ≡⟨ refl ⟩ + (λ α -> g ((λ β -> f (x β)) α)) ≡⟨ refl ⟩ + (λ α -> g (f (x α))) ≡⟨ refl ⟩ + map▹ (g ∘ f) x ∎ + + +monad-assoc-def = + {A B C : Set} -> + (f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) -> + bind (bind la f) g ≡ bind la (λ x -> bind (f x) g) + +monad-assoc : monad-assoc-def +monad-assoc = fix lem + where + lem : ▹ monad-assoc-def -> monad-assoc-def + + -- Goal: bind (bind (η x) f) g ≡ bind (η x) (λ y → bind (f y) g) + lem IH f g (η x) = + bind ((bind (η x) f)) g ≡⟨ (λ i → bind (bind-eta x f i) g) ⟩ + bind (f x) g ≡⟨ sym (bind-eta x (λ y -> bind (f y) g)) ⟩ + bind (η x) (λ y → bind (f y) g) ∎ + + + -- Goal: bind (bind ℧ f) g ≡ bind ℧ (λ x → bind (f x) g) + lem IH f g ℧ = + bind (bind ℧ f) g ≡⟨ (λ i → bind (bind-err f i) g) ⟩ + bind ℧ g ≡⟨ bind-err g ⟩ + ℧ ≡⟨ sym (bind-err (λ x -> bind (f x) g)) ⟩ + bind ℧ (λ x → bind (f x) g) ∎ + + + -- Goal: bind (bind (θ x) f) g ≡ bind (θ x) (λ y → bind (f y) g) + -- IH: ▹ (bind (bind la f) g ≡ bind la (λ x -> bind (f x) g)) + lem IH f g (θ x) = + bind (bind (θ x) f) g + ≡⟨ (λ i → bind (bind-theta f x i) g) ⟩ + + bind (θ (ext f <$> x)) g + ≡⟨ bind-theta g (ext f <$> x) ⟩ + + -- we can put map-comp in the hole here and refine (but it's wrong) + θ ( ext g <$> (ext f <$> x) ) + ≡⟨ refl ⟩ + + θ ( (ext g ∘ ext f) <$> x ) + ≡⟨ refl ⟩ + + θ ( ((λ lb -> bind lb g) ∘ (λ la -> bind la f)) <$> x ) + ≡⟨ refl ⟩ -- surprised that this works + + θ ( (λ la -> bind (bind la f) g) <$> x ) + ≡⟨ (λ i → θ (λ t → IH t f g (x t) i)) ⟩ + + θ ( (λ la -> bind la (λ y -> bind (f y) g)) <$> x ) + ≡⟨ refl ⟩ + + θ ( (ext (λ y -> bind (f y) g)) <$> x ) + ≡⟨ sym (bind-theta ((λ y -> bind (f y) g)) x) ⟩ + + bind (θ x) (λ y → bind (f y) g) ∎ + + + + -- bind (θ ( (λ la -> bind la f) <$> x)) g ≡⟨ {!!} ⟩ + + + -- | TODO: -- | 1. monotone monad structure