Skip to content
Snippets Groups Projects
Commit 976b565a authored by Max New's avatar Max New
Browse files

theta as a left adjoint?

parent 4ffb0d3c
No related branches found
No related tags found
No related merge requests found
{-# OPTIONS --cubical --rewriting --guarded #-}
open import Later
module GuardedCat (k : Clock) where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Adjoint
variable
ℓ ℓ' : Level
▸c : ∀ (C : ▹ k , Category ℓ ℓ') → Category ℓ ℓ'
▸c C = record
{ ob = ▸ λ t → Category.ob (C t)
; Hom[_,_] = λ a b → ▸ (λ t → Category.Hom[_,_] (C t) (a t) (b t))
; id = λ t → Category.id (C t)
; _⋆_ = λ f g t → Category._⋆_ (C t) (f t) (g t)
; ⋆IdL = λ f i t → Category.⋆IdL (C t) (f t) i
; ⋆IdR = λ f i t → Category.⋆IdR (C t) (f t) i
; ⋆Assoc = λ f g h i t → Category.⋆Assoc (C t) (f t) (g t) (h t) i
; isSetHom = λ x y → λ p:x≡y q:x≡y i j t → Category.isSetHom (C t) (x t) (y t) (λ k → p:x≡y k t) ((λ k → q:x≡y k t)) i j
}
next-c : ∀ (C : Category ℓ ℓ') → Functor C (▸c (next C))
next-c C = record
{ F-ob = λ x t → x
; F-hom = λ z t → z
; F-id = λ i t → C.id
; F-seq = λ f g i t → f ⋆ g
}
where module C = Category C
open C
record GuardedCat : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
open NaturalBijection
field
C : Category ℓ ℓ'
θ-UMP : isRightAdjoint (next-c C)
-- Conjecture: Every GuardedCat has an initial object ⊥ = fix θ₀
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment