From 976b565a36267bfd1bf43bf0764c04b29745a2c6 Mon Sep 17 00:00:00 2001 From: Max New <maxsnew@gmail.com> Date: Thu, 20 Oct 2022 14:38:32 -0400 Subject: [PATCH] theta as a left adjoint? --- .../guarded-cubical/GuardedCat.agda | 43 +++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 formalizations/guarded-cubical/GuardedCat.agda diff --git a/formalizations/guarded-cubical/GuardedCat.agda b/formalizations/guarded-cubical/GuardedCat.agda new file mode 100644 index 0000000..210839d --- /dev/null +++ b/formalizations/guarded-cubical/GuardedCat.agda @@ -0,0 +1,43 @@ +{-# OPTIONS --cubical --rewriting --guarded #-} +open import Later + +module GuardedCat (k : Clock) where + + +open import Cubical.Foundations.Prelude +open import Cubical.Categories.Category +open import Cubical.Categories.Functor +open import Cubical.Categories.Adjoint + +variable + ℓ ℓ' : Level + +▸c : ∀ (C : ▹ k , Category ℓ ℓ') → Category ℓ ℓ' +▸c C = record + { ob = ▸ λ t → Category.ob (C t) + ; Hom[_,_] = λ a b → ▸ (λ t → Category.Hom[_,_] (C t) (a t) (b t)) + ; id = λ t → Category.id (C t) + ; _⋆_ = λ f g t → Category._⋆_ (C t) (f t) (g t) + ; ⋆IdL = λ f i t → Category.⋆IdL (C t) (f t) i + ; ⋆IdR = λ f i t → Category.⋆IdR (C t) (f t) i + ; ⋆Assoc = λ f g h i t → Category.⋆Assoc (C t) (f t) (g t) (h t) i + ; isSetHom = λ x y → λ p:x≡y q:x≡y i j t → Category.isSetHom (C t) (x t) (y t) (λ k → p:x≡y k t) ((λ k → q:x≡y k t)) i j + } + +next-c : ∀ (C : Category ℓ ℓ') → Functor C (▸c (next C)) +next-c C = record + { F-ob = λ x t → x + ; F-hom = λ z t → z + ; F-id = λ i t → C.id + ; F-seq = λ f g i t → f ⋆ g + } + where module C = Category C + open C + +record GuardedCat : Type (ℓ-suc (ℓ-max ℓ ℓ')) where + open NaturalBijection + field + C : Category ℓ ℓ' + θ-UMP : isRightAdjoint (next-c C) + +-- Conjecture: Every GuardedCat has an initial object ⊥ = fix θ₀ -- GitLab