Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
6f771a42
Commit
6f771a42
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
additions to Lift.agda
parent
2d0f4cd0
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Semantics/Lift.agda
+151
-3
151 additions, 3 deletions
formalizations/guarded-cubical/Semantics/Lift.agda
with
151 additions
and
3 deletions
formalizations/guarded-cubical/Semantics/Lift.agda
+
151
−
3
View file @
6f771a42
...
...
@@ -3,6 +3,7 @@
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
open import Common.Common
open import Common.Later
module Semantics.Lift (k : Clock) where
...
...
@@ -16,6 +17,7 @@ open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sum
open import Cubical.Data.Unit renaming (Unit to ⊤)
open import Cubical.Foundations.Transport
open import Cubical.Data.Nat hiding (_^_)
open import Common.Common
open import Common.LaterProperties
...
...
@@ -23,7 +25,7 @@ open import Common.LaterProperties
private
variable
ℓ ℓ' : Level
A B
: Set
ℓ
A B
C : Type
ℓ
private
▹_ : Set ℓ → Set ℓ
▹_ A = ▹_,_ k A
...
...
@@ -215,6 +217,9 @@ inj-θ lx~ ly~ H = let lx~≡ly~ = cong pred H in
λ t i → lx~≡ly~ i t
-- Monadic structure
ret : {X : Type ℓ} -> X -> L℧ X
...
...
@@ -283,10 +288,70 @@ monad-unit-r = fix lem
≡⟨ refl ⟩
θ x ∎
monad-assoc : {A B C : Type} -> (f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) -> ext g (ext f la) ≡ ext (λ x -> ext g (f x)) la
monad-assoc : {A B C : Type} -> (f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) ->
ext g (ext f la) ≡ ext (λ x -> ext g (f x)) la
monad-assoc = {!!}
{-
monad-assoc-def =
{A B C : Type} ->
(f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) ->
bind (bind la f) g ≡ bind la (λ x -> bind (f x) g)
monad-assoc : monad-assoc-def
monad-assoc = fix lem
where
lem : ▹ monad-assoc-def -> monad-assoc-def
-- Goal: bind (bind (η x) f) g ≡ bind (η x) (λ y → bind (f y) g)
lem IH f g (η x) =
bind ((bind (η x) f)) g ≡⟨ (λ i → bind (bind-eta x f i) g) ⟩
bind (f x) g ≡⟨ sym (bind-eta x (λ y -> bind (f y) g)) ⟩
bind (η x) (λ y → bind (f y) g) ∎
-- Goal: bind (bind ℧ f) g ≡ bind ℧ (λ x → bind (f x) g)
lem IH f g ℧ =
bind (bind ℧ f) g ≡⟨ (λ i → bind (bind-err f i) g) ⟩
bind ℧ g ≡⟨ bind-err g ⟩
℧ ≡⟨ sym (bind-err (λ x -> bind (f x) g)) ⟩
bind ℧ (λ x → bind (f x) g) ∎
-- Goal: bind (bind (θ x) f) g ≡ bind (θ x) (λ y → bind (f y) g)
-- IH: ▹ (bind (bind la f) g ≡ bind la (λ x -> bind (f x) g))
lem IH f g (θ x) =
bind (bind (θ x) f) g
≡⟨ (λ i → bind (bind-theta f x i) g) ⟩
bind (θ (ext f <$> x)) g
≡⟨ bind-theta g (ext f <$> x) ⟩
-- we can put map-comp in the hole here and refine (but it's wrong)
θ ( ext g <$> (ext f <$> x) )
≡⟨ refl ⟩
θ ( (ext g ∘ ext f) <$> x )
≡⟨ refl ⟩
θ ( ((λ lb -> bind lb g) ∘ (λ la -> bind la f)) <$> x )
≡⟨ refl ⟩ -- surprised that this works
θ ( (λ la -> bind (bind la f) g) <$> x )
≡⟨ (λ i → θ (λ t → IH t f g (x t) i)) ⟩
θ ( (λ la -> bind la (λ y -> bind (f y) g)) <$> x )
≡⟨ refl ⟩
θ ( (ext (λ y -> bind (f y) g)) <$> x )
≡⟨ sym (bind-theta ((λ y -> bind (f y) g)) x) ⟩
bind (θ x) (λ y → bind (f y) g) ∎
-}
mapL : (A -> B) -> L℧ A -> L℧ B
mapL f la = bind la (λ a -> ret (f a))
...
...
@@ -294,11 +359,94 @@ mapL-eta : (f : A -> B) (a : A) ->
mapL f (η a) ≡ η (f a)
mapL-eta f a = ext-eta a λ a → ret (f a)
mapL-℧ : (f : A -> B) ->
mapL f ℧ ≡ ℧
mapL-℧ f = ext-err (ret ∘ f)
mapL-theta : (f : A -> B) (la~ : ▹ (L℧ A)) ->
mapL f (θ la~) ≡ θ (mapL f <$> la~)
mapL-theta f la~ = ext-theta (ret ∘ f) la~
mapL-id : (la : L℧ A) -> mapL id la ≡ la
mapL-id : (la : L℧ A) -> mapL id la ≡ la
-- mapL id_A ≡ id_LA
mapL-id la = monad-unit-r la
mapL-comp' : (g : B -> C) (f : A -> B) -> -- mapL (g ∘ f) ≡ mapL g ∘ mapL f
▹ ((la : L℧ A) -> mapL (g ∘ f) la ≡ (mapL g ∘ mapL f) la) ->
(la : L℧ A) -> mapL (g ∘ f) la ≡ (mapL g ∘ mapL f) la
mapL-comp' g f _ (η x) = lem1 ∙ sym lem2
where
lem1 : mapL (g ∘ f) (η x) ≡ η (g (f x))
lem1 = mapL-eta _ _
lem2 : (mapL g ∘ mapL f) (η x) ≡ η (g (f x))
lem2 = (cong (mapL g) (mapL-eta f x)) ∙ mapL-eta g (f x)
mapL-comp' g f _ ℧ = lem1 ∙ sym lem2
where
lem1 : mapL (g ∘ f) ℧ ≡ ℧
lem1 = mapL-℧ _
lem2 : (mapL g ∘ mapL f) ℧ ≡ ℧
lem2 = (cong (mapL g) (mapL-℧ _)) ∙ mapL-℧ _
mapL-comp' g f IH (θ la~) = lem1 ∙ sym lem2
where
lem1 : mapL (g ∘ f) (θ la~) ≡ θ (mapL (g ∘ f) <$> la~)
lem1 = mapL-theta _ _
lem2 : (mapL g ∘ mapL f) (θ la~) ≡ θ (mapL (g ∘ f) <$> la~)
lem2 = cong (mapL g) (mapL-theta _ _) ∙
mapL-theta g (mapL f <$> la~) ∙
λ i -> θ λ t -> sym (IH t (la~ t)) i -- θ (mapL g <$> (mapL f <$> la~)) ≡ θ (mapL (g ∘ f) <$> la~)
-- for lem2:
--
-- (mapL g ∘ mapL f) (θ la~) = mapL g (θ (mapL f <$> la~)) [by applying mapL-theta on the inside]
-- = θ ((mapL g <$> mapL f <$> la~) [by applying mapL-theta on the inside]
-- = θ ((mapL g ∘ mapL f) <$> la~) [by definition of <$>]
-- = θ (λ t -> (mapL g ∘ mapL f) (la~ t)) [by definition of <$>]
-- = θ (λ t -> mapL (g ∘ f) (la~ t)) [by IH]
-- = θ (mapL (g ∘ f) <$> la~) [by definition of <$>]
mapL-comp : (g : B -> C) (f : A -> B) -> (la : L℧ A) ->
mapL (g ∘ f) la ≡ (mapL g ∘ mapL f) la
mapL-comp g f = fix (mapL-comp' g f)
-- Strong monadic structure
retStrong : {Γ X : Type ℓ} -> Γ -> X -> L℧ X
retStrong γ x = ret x
extStrong' : {Γ X Y : Type ℓ} ->
(Γ -> X -> L℧ Y) ->
▹ (Γ -> L℧ X -> L℧ Y) -> (Γ -> L℧ X -> L℧ Y)
extStrong' f rec γ (η x) = f γ x
extStrong' f rec _ ℧ = ℧
extStrong' f rec γ (θ l-la) = θ (λ t -> rec t γ (l-la t))
extStrong : {Γ X Y : Type ℓ} -> (Γ -> X -> L℧ Y) -> (Γ -> L℧ X -> L℧ Y)
extStrong f = fix (extStrong' f)
-- Commuting condition between theta and delta
theta-delta-comm : {X : Type ℓ} (lx~ : ▹ L℧ X) ->
θ (λ t -> δ (lx~ t)) ≡ δ (θ (λ t -> lx~ t))
theta-delta-comm lx~ = θ (λ t -> δ (lx~ t)) ≡⟨ refl ⟩
θ (λ t -> θ (next (lx~ t))) ≡⟨ (λ i -> θ (λ t -> θ (next-Mt≡M lx~ t i))) ⟩
θ (λ t -> θ lx~) ≡⟨ refl ⟩
θ (next (θ lx~)) ≡⟨ refl ⟩
δ (θ lx~) ∎
theta-delta-n-comm : {X : Type ℓ} (lx~ : ▹ L℧ X) (n : ℕ) ->
θ (λ t -> (δ ^ n) (lx~ t)) ≡ (δ ^ n) (θ (λ t -> lx~ t))
theta-delta-n-comm lx~ zero = refl
theta-delta-n-comm lx~ (suc n) =
-- Goal: θ (λ t → δ ((δ ^ n) (lx~ t))) ≡ δ ((δ ^ n) (θ lx~))
θ (λ t → δ ((δ ^ n) (lx~ t)))
≡⟨ theta-delta-comm (λ t → (δ ^ n) (lx~ t)) ⟩ -- i.e δ^n ∘ lx~
δ (θ (λ t → ((δ ^ n) (lx~ t))))
≡⟨ cong δ (theta-delta-n-comm lx~ n) ⟩
δ ((δ ^ n) (θ lx~)) ∎
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment