Skip to content
Snippets Groups Projects
Commit 6f771a42 authored by Eric Giovannini's avatar Eric Giovannini
Browse files

additions to Lift.agda

parent 2d0f4cd0
No related branches found
No related tags found
No related merge requests found
......@@ -3,6 +3,7 @@
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
open import Common.Common
open import Common.Later
module Semantics.Lift (k : Clock) where
......@@ -16,6 +17,7 @@ open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sum
open import Cubical.Data.Unit renaming (Unit to ⊤)
open import Cubical.Foundations.Transport
open import Cubical.Data.Nat hiding (_^_)
open import Common.Common
open import Common.LaterProperties
......@@ -23,7 +25,7 @@ open import Common.LaterProperties
private
variable
ℓ ℓ' : Level
A B : Set
A B C : Type
private
▹_ : Set ℓ → Set ℓ
▹_ A = ▹_,_ k A
......@@ -215,6 +217,9 @@ inj-θ lx~ ly~ H = let lx~≡ly~ = cong pred H in
λ t i → lx~≡ly~ i t
-- Monadic structure
ret : {X : Type ℓ} -> X -> L℧ X
......@@ -283,10 +288,70 @@ monad-unit-r = fix lem
≡⟨ refl ⟩
θ x ∎
monad-assoc : {A B C : Type} -> (f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) -> ext g (ext f la) ≡ ext (λ x -> ext g (f x)) la
monad-assoc : {A B C : Type} -> (f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) ->
ext g (ext f la) ≡ ext (λ x -> ext g (f x)) la
monad-assoc = {!!}
{-
monad-assoc-def =
{A B C : Type} ->
(f : A -> L℧ B) (g : B -> L℧ C) (la : L℧ A) ->
bind (bind la f) g ≡ bind la (λ x -> bind (f x) g)
monad-assoc : monad-assoc-def
monad-assoc = fix lem
where
lem : ▹ monad-assoc-def -> monad-assoc-def
-- Goal: bind (bind (η x) f) g ≡ bind (η x) (λ y → bind (f y) g)
lem IH f g (η x) =
bind ((bind (η x) f)) g ≡⟨ (λ i → bind (bind-eta x f i) g) ⟩
bind (f x) g ≡⟨ sym (bind-eta x (λ y -> bind (f y) g)) ⟩
bind (η x) (λ y → bind (f y) g) ∎
-- Goal: bind (bind ℧ f) g ≡ bind ℧ (λ x → bind (f x) g)
lem IH f g ℧ =
bind (bind ℧ f) g ≡⟨ (λ i → bind (bind-err f i) g) ⟩
bind ℧ g ≡⟨ bind-err g ⟩
℧ ≡⟨ sym (bind-err (λ x -> bind (f x) g)) ⟩
bind ℧ (λ x → bind (f x) g) ∎
-- Goal: bind (bind (θ x) f) g ≡ bind (θ x) (λ y → bind (f y) g)
-- IH: ▹ (bind (bind la f) g ≡ bind la (λ x -> bind (f x) g))
lem IH f g (θ x) =
bind (bind (θ x) f) g
≡⟨ (λ i → bind (bind-theta f x i) g) ⟩
bind (θ (ext f <$> x)) g
≡⟨ bind-theta g (ext f <$> x) ⟩
-- we can put map-comp in the hole here and refine (but it's wrong)
θ ( ext g <$> (ext f <$> x) )
≡⟨ refl ⟩
θ ( (ext g ∘ ext f) <$> x )
≡⟨ refl ⟩
θ ( ((λ lb -> bind lb g) ∘ (λ la -> bind la f)) <$> x )
≡⟨ refl ⟩ -- surprised that this works
θ ( (λ la -> bind (bind la f) g) <$> x )
≡⟨ (λ i → θ (λ t → IH t f g (x t) i)) ⟩
θ ( (λ la -> bind la (λ y -> bind (f y) g)) <$> x )
≡⟨ refl ⟩
θ ( (ext (λ y -> bind (f y) g)) <$> x )
≡⟨ sym (bind-theta ((λ y -> bind (f y) g)) x) ⟩
bind (θ x) (λ y → bind (f y) g) ∎
-}
mapL : (A -> B) -> L℧ A -> L℧ B
mapL f la = bind la (λ a -> ret (f a))
......@@ -294,11 +359,94 @@ mapL-eta : (f : A -> B) (a : A) ->
mapL f (η a) ≡ η (f a)
mapL-eta f a = ext-eta a λ a → ret (f a)
mapL-℧ : (f : A -> B) ->
mapL f ℧ ≡ ℧
mapL-℧ f = ext-err (ret ∘ f)
mapL-theta : (f : A -> B) (la~ : ▹ (L℧ A)) ->
mapL f (θ la~) ≡ θ (mapL f <$> la~)
mapL-theta f la~ = ext-theta (ret ∘ f) la~
mapL-id : (la : L℧ A) -> mapL id la ≡ la
mapL-id : (la : L℧ A) -> mapL id la ≡ la -- mapL id_A ≡ id_LA
mapL-id la = monad-unit-r la
mapL-comp' : (g : B -> C) (f : A -> B) -> -- mapL (g ∘ f) ≡ mapL g ∘ mapL f
▹ ((la : L℧ A) -> mapL (g ∘ f) la ≡ (mapL g ∘ mapL f) la) ->
(la : L℧ A) -> mapL (g ∘ f) la ≡ (mapL g ∘ mapL f) la
mapL-comp' g f _ (η x) = lem1 ∙ sym lem2
where
lem1 : mapL (g ∘ f) (η x) ≡ η (g (f x))
lem1 = mapL-eta _ _
lem2 : (mapL g ∘ mapL f) (η x) ≡ η (g (f x))
lem2 = (cong (mapL g) (mapL-eta f x)) ∙ mapL-eta g (f x)
mapL-comp' g f _ ℧ = lem1 ∙ sym lem2
where
lem1 : mapL (g ∘ f) ℧ ≡ ℧
lem1 = mapL-℧ _
lem2 : (mapL g ∘ mapL f) ℧ ≡ ℧
lem2 = (cong (mapL g) (mapL-℧ _)) ∙ mapL-℧ _
mapL-comp' g f IH (θ la~) = lem1 ∙ sym lem2
where
lem1 : mapL (g ∘ f) (θ la~) ≡ θ (mapL (g ∘ f) <$> la~)
lem1 = mapL-theta _ _
lem2 : (mapL g ∘ mapL f) (θ la~) ≡ θ (mapL (g ∘ f) <$> la~)
lem2 = cong (mapL g) (mapL-theta _ _) ∙
mapL-theta g (mapL f <$> la~) ∙
λ i -> θ λ t -> sym (IH t (la~ t)) i -- θ (mapL g <$> (mapL f <$> la~)) ≡ θ (mapL (g ∘ f) <$> la~)
-- for lem2:
--
-- (mapL g ∘ mapL f) (θ la~) = mapL g (θ (mapL f <$> la~)) [by applying mapL-theta on the inside]
-- = θ ((mapL g <$> mapL f <$> la~) [by applying mapL-theta on the inside]
-- = θ ((mapL g ∘ mapL f) <$> la~) [by definition of <$>]
-- = θ (λ t -> (mapL g ∘ mapL f) (la~ t)) [by definition of <$>]
-- = θ (λ t -> mapL (g ∘ f) (la~ t)) [by IH]
-- = θ (mapL (g ∘ f) <$> la~) [by definition of <$>]
mapL-comp : (g : B -> C) (f : A -> B) -> (la : L℧ A) ->
mapL (g ∘ f) la ≡ (mapL g ∘ mapL f) la
mapL-comp g f = fix (mapL-comp' g f)
-- Strong monadic structure
retStrong : {Γ X : Type ℓ} -> Γ -> X -> L℧ X
retStrong γ x = ret x
extStrong' : {Γ X Y : Type ℓ} ->
(Γ -> X -> L℧ Y) ->
▹ (Γ -> L℧ X -> L℧ Y) -> (Γ -> L℧ X -> L℧ Y)
extStrong' f rec γ (η x) = f γ x
extStrong' f rec _ ℧ = ℧
extStrong' f rec γ (θ l-la) = θ (λ t -> rec t γ (l-la t))
extStrong : {Γ X Y : Type ℓ} -> (Γ -> X -> L℧ Y) -> (Γ -> L℧ X -> L℧ Y)
extStrong f = fix (extStrong' f)
-- Commuting condition between theta and delta
theta-delta-comm : {X : Type ℓ} (lx~ : ▹ L℧ X) ->
θ (λ t -> δ (lx~ t)) ≡ δ (θ (λ t -> lx~ t))
theta-delta-comm lx~ = θ (λ t -> δ (lx~ t)) ≡⟨ refl ⟩
θ (λ t -> θ (next (lx~ t))) ≡⟨ (λ i -> θ (λ t -> θ (next-Mt≡M lx~ t i))) ⟩
θ (λ t -> θ lx~) ≡⟨ refl ⟩
θ (next (θ lx~)) ≡⟨ refl ⟩
δ (θ lx~) ∎
theta-delta-n-comm : {X : Type ℓ} (lx~ : ▹ L℧ X) (n : ℕ) ->
θ (λ t -> (δ ^ n) (lx~ t)) ≡ (δ ^ n) (θ (λ t -> lx~ t))
theta-delta-n-comm lx~ zero = refl
theta-delta-n-comm lx~ (suc n) =
-- Goal: θ (λ t → δ ((δ ^ n) (lx~ t))) ≡ δ ((δ ^ n) (θ lx~))
θ (λ t → δ ((δ ^ n) (lx~ t)))
≡⟨ theta-delta-comm (λ t → (δ ^ n) (lx~ t)) ⟩ -- i.e δ^n ∘ lx~
δ (θ (λ t → ((δ ^ n) (lx~ t))))
≡⟨ cong δ (theta-delta-n-comm lx~ n) ⟩
δ ((δ ^ n) (θ lx~)) ∎
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment