Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
2d0f4cd0
Commit
2d0f4cd0
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Constructions on thin double cats via constructions on displayed cats
parent
206bb935
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Cubical/HigherCategories/ThinDoubleCategory/Constructions/Constructions.agda
+148
-0
148 additions, 0 deletions
...ories/ThinDoubleCategory/Constructions/Constructions.agda
with
148 additions
and
0 deletions
formalizations/guarded-cubical/Cubical/HigherCategories/ThinDoubleCategory/Constructions/Constructions.agda
0 → 100644
+
148
−
0
View file @
2d0f4cd0
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
module Cubical.HigherCategories.ThinDoubleCategory.Constructions.Constructions where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Categories.Displayed.Base
open import Cubical.Categories.Displayed.Limits.BinProduct
open import Cubical.Categories.Displayed.Limits.Terminal
open import Cubical.Categories.Displayed.Preorder
open import Cubical.Categories.Category.Base
open import Cubical.Categories.Constructions.BinProduct
open import Cubical.Categories.Limits.Terminal.More
open import Cubical.Categories.Limits.Terminal renaming (Terminal to 1Terminal)
open import Cubical.Categories.Limits.BinProduct renaming
(BinProduct to 1BinProduct ; BinProducts to 1BinProducts)
open import Cubical.Categories.Limits.BinProduct.More
open import Cubical.HigherCategories.ThinDoubleCategory.ThinDoubleCat
open import Cubical.Categories.Presheaf.Base
open import Cubical.Categories.Presheaf.Representable
open import Cubical.Categories.Functors.Constant
open import Cubical.Categories.Instances.Sets
open import Cubical.Foundations.HLevels
open import Cubical.Categories.Functor.Base
open import Cubical.Foundations.Equiv
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
open ThinDoubleCat
open Category
open Functor
open UniversalElement
--
-- Product of Hsets
--
_×hs_ : hSet ℓ -> hSet ℓ' -> hSet (ℓ-max ℓ ℓ')
(A , isSetA) ×hs (B , isSetB) = A × B , isSet× isSetA isSetB
--
-- Product of presheaves
--
_×Psh_ : {C D : Category ℓ ℓ'} {ℓS : Level} -> Presheaf C ℓS -> Presheaf D ℓS ->
Presheaf (C ×C D) ℓS
(P ×Psh Q) .F-ob (c , d) =
(P .F-ob c) ×hs (Q .F-ob d)
(P ×Psh Q) .F-hom {(c , d)} {(c' , d')} (f , g) (x , y) =
(P .F-hom f x) , (Q .F-hom g y)
(P ×Psh Q) .F-id {c , d} =
funExt λ {(x , y) -> ≡-× (funExt⁻ (P .F-id) x) (funExt⁻ (Q .F-id) y)}
(P ×Psh Q) .F-seq {c , d} {c' , d'} {c'' , d''} (f , g) (f' , g') =
funExt (λ { (x , y) -> ≡-× (funExt⁻ (P .F-seq f f') x) (funExt⁻ (Q .F-seq g g') y) })
--
-- Universal element of the product of presheaves
--
_×UE_ : {C D : Category ℓ ℓ'} {ℓS : Level} {P : Presheaf C ℓS} {Q : Presheaf D ℓS} ->
UniversalElement C P -> UniversalElement D Q ->
UniversalElement (C ×C D) (_×Psh_ {C = C} {D = D} P Q)
(ηP ×UE ηQ) .vertex = (ηP .vertex) , (ηQ .vertex)
(ηP ×UE ηQ) .element = ηP .element , ηQ .element
(ηP ×UE ηQ) .universal (c , d) .equiv-proof (x , y) .fst .fst =
((ηP .universal c .equiv-proof x .fst .fst) ,
(ηQ .universal d .equiv-proof y .fst .fst))
(ηP ×UE ηQ) .universal (c , d) .equiv-proof (x , y) .fst .snd =
≡-× (ηP .universal c .equiv-proof x .fst .snd)
(ηQ .universal d .equiv-proof y .fst .snd)
(ηP ×UE ηQ) .universal (c , d) .equiv-proof (x , y) .snd ((f , g) , t) =
-- could use Σ≡Prop
ΣPathP ((≡-× (cong fst (ηP .universal c .equiv-proof x .snd (f , cong fst t)))
(cong fst (ηQ .universal d .equiv-proof y .snd (g , cong snd t)))) ,
λ i → ≡-× (ηP .universal c .equiv-proof x .snd (f , cong fst t) i .snd)
(ηQ .universal d .equiv-proof y .snd (g , cong snd t) i .snd))
-- λ i j → (ηP .universal c .equiv-proof x .snd (f , cong fst t) i .snd j) ,
-- ηQ .universal d .equiv-proof y .snd (g , cong snd t) i .snd j)
---
-- Constant presheaf over C ×C D equals the product of
-- constant presheaves over C and D
---
Const-product : ∀ {C D : Category ℓ ℓ'} {x : hSet ℓ''} ->
(Constant (C ×C D) (SET ℓ'') (x ×hs x)) ≡
(_×Psh_ {C = C ^op} {D = D ^op} (Constant C (SET ℓ'') x) (Constant D (SET ℓ'') x))
Const-product = Functor≡
(λ {(c , d) -> refl })
λ f -> refl
-- Define terminal objects on a thin double category C
-- in terms of displayed terminal objects on the
-- displayed category of squares (Squares C)
module _ (C : ThinDoubleCat ℓ ℓ' ℓ'' ℓ''') where
open Category (VCat C)
module Terminal where
-- User provices a terminal object in VCat, and we construct a terminal object
-- in the displayed preorder of squares of C.
-- UniversalElement (C ×C D)
Term : (t : 1Terminal (VCat C)) ->
Type (ℓ-max (ℓ-max (ℓ-max ℓ'' ℓ''') (ℓ-max ℓ ℓ)) (ℓ-max ℓ' ℓ'))
Term t = Terminalᴰ (Preorderᴰ→Catᴰ (Squares C))
(transport {!!} (terminalToUniversalElement t ×UE terminalToUniversalElement t))
-- "manual" way
-- (Preorderᴰ→Catᴰ (Squares C)) (terminalToUniversalElement
-- ((fst t , fst t) ,
-- (λ { (c , c') →
-- ((t .snd c .fst) , (t .snd c' .fst)) ,
-- λ { (f , f') → ≡-× (t .snd c .snd f) (t .snd c' .snd f')}})))
Terminal : Type (ℓ-max (ℓ-max (ℓ-max ℓ ℓ') ℓ'') ℓ''')
Terminal = Σ[ t ∈ 1Terminal (VCat C) ] Term t
module Prod where
{-
Prod : (p : 1BinProducts (VCat C)) ->
Type {!!}
Prod p = BinProductᴰ (Preorderᴰ→Catᴰ (Squares C)) {!!} {!!}
-}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment