Skip to content
Snippets Groups Projects
Commit 3fa7a71f authored by Max New's avatar Max New
Browse files

meeting notes and agdaize cbpv judgmental structure

parent 757bfea7
No related branches found
No related tags found
No related merge requests found
module CBPV (Σv : Set) (Σc : Set) where
open import Data.Maybe
open import Relation.Binary.PropositionalEquality
data VType : Set
data CType : Set
data VType where
base : Σv -> VType
data CType where
base : Σc -> CType
data Nat : Set where
O : Nat
S : Nat -> Nat
data Fin : Nat -> Set where
fO : ∀ n -> Fin (S n)
fS : ∀ n -> Fin n -> Fin (S n)
record Iso (A B : Set) : Set where
field
to : A -> B
fro : B -> A
sect : ∀ (a : A) -> fro (to a) ≡ a
retr : ∀ (b : B) -> to (fro b) ≡ b
record FinSet : Set₁ where
field
X : Set
card : Nat
is-finite : Iso X (Fin card)
VCtx : FinSet -> Set
VCtx U = FinSet.X U -> VType
record VCCtx (U : FinSet) : Set where
constructor _/_
field
vvars : VCtx U
stoup : Maybe CType
ValSig : Set₁
ValSig = ∀ {U} -> VCtx U -> VType -> Set
CompSig : Set₁
CompSig = ∀ {U} -> VCCtx U -> CType -> Set
module Terms (Σtmv : ValSig) (Σtmc : CompSig) where
data _|-v_ {U} (Γ : VCtx U) : VType -> Set₁
data _|-c_ {U} : (ΓH : VCCtx U) -> CType -> Set₁
val-subst : ∀ U V -> VCtx U -> VCtx V -> Set₁
data _|-mayc_ : ∀ {U} -> VCCtx U -> Maybe CType -> Set₁
record comp-subst U V (ΓH : VCCtx U) (ΔH : VCCtx V) : Set₁
data _|-v_ {U} (Γ : VCtx U) where
var : ∀ (u : FinSet.X U) -> Γ |-v (Γ u)
base : ∀ V (Δ : VCtx V) A (f : Σtmv {V} Δ A) -> val-subst U V Γ Δ -> Γ |-v A
data _|-c_ {U} where
hole : ∀ (Γ : VCtx U) B -> (Γ / just B) |-c B
base : ∀ (ΓH : VCCtx U) V (ΔH : VCCtx V) B (p : Σtmc {V} ΔH B) -> comp-subst U V ΓH ΔH -> ΓH |-c B
val-subst U V Γ Δ = ∀ (v : FinSet.X V) -> _|-v_ {U} Γ (Δ v)
data _|-mayc_ where
done : ∀ U (ΓH : VCCtx U)-> ΓH |-mayc nothing
one : ∀ U (ΓH : VCCtx U) B -> ΓH |-c B -> ΓH |-mayc (just B)
record comp-subst U V ΓH ΔH where
inductive
field
vsubst : val-subst U V (VCCtx.vvars ΓH) (VCCtx.vvars ΔH)
csubst : ΓH |-mayc (VCCtx.stoup ΔH)
vv-substitute : ∀ U V (Γ : VCtx U)(Δ : VCtx V) A -> val-subst U V Γ Δ -> Δ |-v A -> Γ |-v A
vv-compose : ∀ U V W (Γ : VCtx U) (Δ : VCtx V) (E : VCtx W) -> val-subst W V E Δ -> val-subst V U Δ Γ -> val-subst W U E Γ
vv-substitute U V Γ Δ .(Δ u) δ (var u) = δ u
vv-substitute U V Γ Δ A δ (base V₁ Δ' .A f δ') = base V₁ Δ' A f (vv-compose V₁ V U _ _ _ δ δ')
vv-compose U V W Γ Δ E δ γ = λ v → vv-substitute _ _ _ _ _ δ (γ v)
* Where We're At
- CBN GTT was accepted to FSCD! Need to work on the final draft
- LR for CBV GTT is submitted to ICFP
- What is CBV GTT?
- Current Idea: We have values and terms, and we hvae "value type
dynamism" and "term type dynamism"
- Term Type Dynamism gives us an ep pair of terms
- Value Type Dynamism gives us an ep pair of values
- Value Type Dynamism *implies* Term Type Dynamism, return
preserves the ep pair
- Should we be doing CBPV GTT instead?
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment