Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
3fa7a71f
Commit
3fa7a71f
authored
6 years ago
by
Max New
Browse files
Options
Downloads
Patches
Plain Diff
meeting notes and agdaize cbpv judgmental structure
parent
757bfea7
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
code/cbpv.agda
+79
-0
79 additions, 0 deletions
code/cbpv.agda
notes/meeting-04-06-2018.org
+11
-0
11 additions, 0 deletions
notes/meeting-04-06-2018.org
with
90 additions
and
0 deletions
code/cbpv.agda
0 → 100644
+
79
−
0
View file @
3fa7a71f
module CBPV (Σv : Set) (Σc : Set) where
open import Data.Maybe
open import Relation.Binary.PropositionalEquality
data VType : Set
data CType : Set
data VType where
base : Σv -> VType
data CType where
base : Σc -> CType
data Nat : Set where
O : Nat
S : Nat -> Nat
data Fin : Nat -> Set where
fO : ∀ n -> Fin (S n)
fS : ∀ n -> Fin n -> Fin (S n)
record Iso (A B : Set) : Set where
field
to : A -> B
fro : B -> A
sect : ∀ (a : A) -> fro (to a) ≡ a
retr : ∀ (b : B) -> to (fro b) ≡ b
record FinSet : Set₁ where
field
X : Set
card : Nat
is-finite : Iso X (Fin card)
VCtx : FinSet -> Set
VCtx U = FinSet.X U -> VType
record VCCtx (U : FinSet) : Set where
constructor _/_
field
vvars : VCtx U
stoup : Maybe CType
ValSig : Set₁
ValSig = ∀ {U} -> VCtx U -> VType -> Set
CompSig : Set₁
CompSig = ∀ {U} -> VCCtx U -> CType -> Set
module Terms (Σtmv : ValSig) (Σtmc : CompSig) where
data _|-v_ {U} (Γ : VCtx U) : VType -> Set₁
data _|-c_ {U} : (ΓH : VCCtx U) -> CType -> Set₁
val-subst : ∀ U V -> VCtx U -> VCtx V -> Set₁
data _|-mayc_ : ∀ {U} -> VCCtx U -> Maybe CType -> Set₁
record comp-subst U V (ΓH : VCCtx U) (ΔH : VCCtx V) : Set₁
data _|-v_ {U} (Γ : VCtx U) where
var : ∀ (u : FinSet.X U) -> Γ |-v (Γ u)
base : ∀ V (Δ : VCtx V) A (f : Σtmv {V} Δ A) -> val-subst U V Γ Δ -> Γ |-v A
data _|-c_ {U} where
hole : ∀ (Γ : VCtx U) B -> (Γ / just B) |-c B
base : ∀ (ΓH : VCCtx U) V (ΔH : VCCtx V) B (p : Σtmc {V} ΔH B) -> comp-subst U V ΓH ΔH -> ΓH |-c B
val-subst U V Γ Δ = ∀ (v : FinSet.X V) -> _|-v_ {U} Γ (Δ v)
data _|-mayc_ where
done : ∀ U (ΓH : VCCtx U)-> ΓH |-mayc nothing
one : ∀ U (ΓH : VCCtx U) B -> ΓH |-c B -> ΓH |-mayc (just B)
record comp-subst U V ΓH ΔH where
inductive
field
vsubst : val-subst U V (VCCtx.vvars ΓH) (VCCtx.vvars ΔH)
csubst : ΓH |-mayc (VCCtx.stoup ΔH)
vv-substitute : ∀ U V (Γ : VCtx U)(Δ : VCtx V) A -> val-subst U V Γ Δ -> Δ |-v A -> Γ |-v A
vv-compose : ∀ U V W (Γ : VCtx U) (Δ : VCtx V) (E : VCtx W) -> val-subst W V E Δ -> val-subst V U Δ Γ -> val-subst W U E Γ
vv-substitute U V Γ Δ .(Δ u) δ (var u) = δ u
vv-substitute U V Γ Δ A δ (base V₁ Δ' .A f δ') = base V₁ Δ' A f (vv-compose V₁ V U _ _ _ δ δ')
vv-compose U V W Γ Δ E δ γ = λ v → vv-substitute _ _ _ _ _ δ (γ v)
This diff is collapsed.
Click to expand it.
notes/meeting-04-06-2018.org
0 → 100644
+
11
−
0
View file @
3fa7a71f
* Where We're At
- CBN GTT was accepted to FSCD! Need to work on the final draft
- LR for CBV GTT is submitted to ICFP
- What is CBV GTT?
- Current Idea: We have values and terms, and we hvae "value type
dynamism" and "term type dynamism"
- Term Type Dynamism gives us an ep pair of terms
- Value Type Dynamism gives us an ep pair of values
- Value Type Dynamism *implies* Term Type Dynamism, return
preserves the ep pair
- Should we be doing CBPV GTT instead?
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment