Skip to content
Snippets Groups Projects
Commit 757bfea7 authored by Max New's avatar Max New
Browse files

universal property for products

parent 27b7ba92
No related branches found
No related tags found
No related merge requests found
\documentclass{article}
\usepackage{amsmath,amssymb}
\usepackage{amsmath,amssymb,amsthm}
\usepackage{tikz-cd}
\usepackage{mathpartir}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{definition}{Definition}
\newcommand{\type}{\,\,\text{type}}
\newcommand{\ctx}{\,\,\text{ctx}}
\newcommand{\ltdyn}{\sqsubseteq}
\newcommand{\gtdyn}{\sqsupseteq}
\newcommand{\equidyn}{\mathrel{\gtdyn\ltdyn}}
\newcommand{\ltdynv}{\mathrel{\sqsubseteq_V}}
\newcommand{\ltdynt}{\mathrel{\sqsubseteq_T}}
\newcommand{\upcast}[2]{\langle #2 \leftarrowtail #1 \rangle}
\newcommand{\dncast}[2]{\langle #1 \twoheadleftarrow #2 \rangle}
\newcommand{\Set}{\text{Set}}
\newcommand{\relto}{\to}
\newcommand{\M}{\mathcal{M}}
......@@ -76,11 +82,11 @@
\inferrule{x:A \in \Gamma}
{\Gamma \vdash^v x : A}
\inferrule{\gamma : \pi_{x:A \in \Gamma} \Delta \vdash \gamma(x) : A\and
\inferrule{\gamma : \prod_{x:A \in \Gamma} \Delta \vdash \gamma(x) : A\and
\Gamma \vdash v : B
}{\Delta \vdash v[\gamma] : B}
\inferrule{\gamma : \pi_{x:A \in \Gamma} \Delta \vdash \gamma(x) : A\and
\inferrule{\gamma : \prod_{x:A \in \Gamma} \Delta \vdash \gamma(x) : A\and
\Gamma \vdash t : B
}{\Delta \vdash t[\gamma] : B}
......@@ -101,6 +107,171 @@
\caption{GTTv Judgmental Term, Value Rules}
\end{figure}
\begin{mathpar}
\inferrule
{}
{\Phi, x \ltdyn x' : A \ltdyn A' \vdash \ret x \ltdyn \ret x' : A \ltdyn A'}
\inferrule
{\Phi \vdash t \ltdyn t' : A \ltdyn A'\and
\Phi, x \ltdyn x' : A \ltdyn A' \vdash u \ltdyn u' : C \ltdyn C'}
{\Phi \vdash \lett x = t; u \ltdyn \lett x' = t'; u' : C \ltdyn C'}
\end{mathpar}
\begin{mathpar}
\inferrule
{\Gamma \vdash^v v : A \and A \ltdyn A'}
{\Gamma \vdash^T \upcast{A}{A'}v : A'}
\inferrule
{\Gamma \vdash^v v : A' \and A \ltdyn A'}
{\Gamma \vdash^T \dncast{A}{A'}v : A}
\inferrule
{}
{x \ltdyn x' : A \ltdyn A' \vdash \upcast{A}{A'}x \ltdyn \ret x' : A'}
\inferrule
{}
{x : A \vdash \ret x \ltdyn \upcast{A}{A'}x : A \ltdyn A'}
\inferrule
{}
{x \ltdyn x' : A \ltdyn A' \vdash \ret x \ltdyn \dncast{A}{A'}x' : A'}
\inferrule
{}
{x' : A' \vdash \dncast{A}{A'}x' \ltdyn x' : A \ltdyn A'}
\end{mathpar}
\begin{mathpar}
\inferrule{A \type \and B \type}{A \times B \type}
\inferrule
{\Gamma \vdash v_1 : A_1 \and \Gamma \vdash v_2 : A_2}
{\Gamma \vdash^{V} (v_1, v_2) : A_1 \times A_2}
\inferrule
{\Gamma \vdash t : A_1 \times A_2\and
\Gamma, x_1 : A_1, x_2 : A_2 \vdash u : C}
{\Gamma \vdash \lett (x,x') = t; u : C}
\inferrule
{}
{x \ltdyn x' : A \ltdyn A', y \ltdyn y' : B \ltdyn B' \vdash \ret (x,y) \ltdyn \ret (x',y') : A \times B \ltdyn A' \times B'}
\inferrule
{\Phi \vdash t \ltdyn t' : A \times B \ltdyn A' \times B'\and
\Phi, x \ltdyn x' : A \ltdyn A', y \ltdyn y' : B \ltdyn B' \vdash u \ltdyn u' : C \ltdyn C'}
{\Phi \vdash \lett (x,y) = t; u \ltdyn \lett (x',y') = t'; u' : C \ltdyn C'}
\inferrule
{}
{\Gamma \vdash \lett (x_1,x_2) = (v_1,v_2); t \equidyn t[v_1/x_1,v_2/x_2] : C}
\inferrule
{}
{\Gamma \vdash t \equidyn \lett (x_1,x_2) = t; \ret (x_1,x_2) : A_1 \times A_2}
\end{mathpar}
\begin{theorem}[Product Contract]
If $A_1 \ltdyn A_1'$ and $A_2 \ltdyn A_2'$ then
\begin{align*}
x' : A_1' \times A_2' \vdash
\dncast{A_1\times A_2}{A_1'\times A_2'}x'
&\equidyn\\
\lett (x_1', x_2') = x'; \lett y_1 = \dncast{A_1}{A_1'}x_1'; \lett y_2 = \dncast{A_2}{A_2'}x_2'; \ret (y_1,y_2)&\equidyn\\
\lett (x_1', x_2') = x'; \lett y_2 = \dncast{A_2}{A_2'}x_2'; \lett y_1 = \dncast{A_1}{A_1'}x_1'; \ret (y_1,y_2)\\
\end{align*}
\end{theorem}
\begin{proof}
First, we show the direction that requires $\eta$ expansion.
\begin{mathpar}
\inferrule{}
{
\dncast{A_1\times A_2}{A_1'\times A_2'}x'
\ltdyn
\lett (x_1', x_2') = x'; \lett y_1 = \dncast{A_1}{A_1'}x_1'; \lett y_2 = \dncast{A_2}{A_2'}x_2'; \ret (y_1,y_2)}
\end{mathpar}
By the Down-Left rule, it is sufficient to prove that under $x \ltdyn x' : (A_1 \times A_2) \ltdyn (A_1' \times A_2')$,
\begin{mathpar}
{x \ltdyn
\lett (x_1', x_2') = x'; \lett y_1 = \dncast{A_1}{A_1'}x_1'; \lett y_2 = \dncast{A_2}{A_2'}x_2'; \ret (y_1,y_2)}
\end{mathpar}
By the $\eta$ rule for products and the let-rule for values, $x :
A_1 \times A_2$ can be expanded as follows:
\begin{align*}
x &\equidyn
\lett (x_1,x_2) = x; \ret (x_1,x_2)\\
&\equidyn
\lett (x_1,x_2) = x; \lett y_1 =\ret x_1; \ret (y_1,x_2)\\
&\equidyn
\lett (x_1,x_2) = x; \lett y_1 = \ret x_1; \lett y_2 = \ret x_2; \ret (y_1,y_2)
\end{align*}
Now that we have the two sides with the same structre, we use the
congruence rules for product pattern matching and we have to use the
Down-Right rule twice:
\begin{mathpar}
x_1 \ltdyn x_1' : A_1 \ltdyn A_1' \vdash \ret x_1 \ltdyn \dncast{A_1}{A_1'}{x_1'} : A_1
x_2 \ltdyn x_2' : A_2 \ltdyn A_2' \vdash \ret x_2 \ltdyn \dncast{A_2}{A_2'}{x_2'} : A_2
\end{mathpar}
Next, we show the reverse inequality using $\eta$ contraction
\begin{mathpar}
{
\lett (x_1', x_2') = x'; \lett y_1 = \dncast{A_1}{A_1'}x_1'; \lett y_2 = \dncast{A_2}{A_2'}x_2'; \ret (y_1,y_2)\ltdyn \dncast{A_1\times A_2}{A_1'\times A_2'}x' }
\end{mathpar}
This time, we need to use congruence \emph{first}, because the
downcast is on the right, we can't use the Down-Right rule unless
the left side is already at the less dynamic type.
So we rewrite the right side as
\begin{align*}
\dncast{A_1\times A_2}{A_1'\times A_2'}x'
&\ltdyn
\lett (x_1',x_2') = x'; \dncast{A_1\times A_2}{A_1'\times A_2'}(x_1',x_2')\\
&\ltdyn
\lett (x_1',x_2') = x'; \lett y_1' = x_1'; \dncast{A_1\times A_2}{A_1'\times A_2'}(x_1',x_2')\\
&\ltdyn
\lett (x_1',x_2') = x'; \lett y_1' = x_1'; \lett y_2' = x_2'; \dncast{A_1\times A_2}{A_1'\times A_2'}(x_1',x_2')
\end{align*}
\end{proof}
Then the proof is again by the congruence rules, using Down-Left twice
and Down-Right once:
\begin{mathpar}
x_1' : A_1' \vdash \dncast{A_1}{A_1'}x_1' \ltdyn \ret x_1'
x_2' : A_2' \vdash \dncast{A_2}{A_2'}x_2' \ltdyn \ret x_2'
x_1 \ltdyn x_1', x_2 \ltdyn x_2' \vdash (x_1,x_2) \ltdyn \dncast{A_1\times A_2}{A_1'\times A_2'}(x_1',x_2')
\end{mathpar}
\begin{corollary}[Projections commute]
For any $A \ltdyn A', B \ltdyn B'$ and $\Gamma, x:A, y : B \vdash t : C$,
\[
\lett x = \dncast{A}{A'}x'; \lett y = \dncast B {B'} y'; t
\equidyn
\lett y = \dncast B {B'} y'; \lett x = \dncast{A}{A'}x'; t
\]
\end{corollary}
\begin{proof}
By the previous theorem, both are equivalent to
\[
\lett z = \dncast{A\times B}{A' \times B'}(x',y');
\lett (x,y) = z;
t
\]
\end{proof}
\end{document}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment