Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
314c7c17
Commit
314c7c17
authored
1 year ago
by
tingtind
Browse files
Options
Downloads
Patches
Plain Diff
add Terms for DoublePoset Semantics
parent
f98dc862
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Semantics/Concrete/DoublePosetSemantics/Terms.agda
+274
-0
274 additions, 0 deletions
...ubical/Semantics/Concrete/DoublePosetSemantics/Terms.agda
with
274 additions
and
0 deletions
formalizations/guarded-cubical/Semantics/Concrete/DoublePosetSemantics/Terms.agda
0 → 100644
+
274
−
0
View file @
314c7c17
{-# OPTIONS --cubical --rewriting --guarded #-}
{-# OPTIONS --lossy-unification #-}
{-# OPTIONS --profile=constraints #-}
open import Common.Later
module Semantics.Concrete.DoublePosetSemantics.Terms (k : Clock) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.List hiding ([_])
open import Cubical.Data.Nat renaming ( ℕ to Nat )
import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.Foundations.Univalence
open import Cubical.Data.Sigma
open import Cubical.Data.Empty as ⊥
open import Common.Common
open import Syntax.Types
-- open import Syntax.Terms
-- open import Semantics.Abstract.TermModel.Convenient
-- open import Semantics.Abstract.TermModel.Convenient.Computations
open import Syntax.IntensionalTerms hiding (π2)
open import Cubical.Foundations.Structure
open import Semantics.Concrete.DoublePoset.Base
open import Semantics.Concrete.DoublePoset.Convenience
open import Semantics.Concrete.DoublePoset.Morphism
open import Semantics.Concrete.DoublePoset.Constructions
open import Semantics.Concrete.DoublePoset.DPMorRelation
open import Semantics.Concrete.DoublePoset.DblPosetCombinators
hiding (S) renaming (Comp to Compose)
open import Semantics.Lift k renaming (θ to θL ; ret to Return)
open import Semantics.Concrete.DoublePoset.DblDyn k
open import Semantics.Concrete.DoublePoset.LockStepErrorBisim k
-- open import Semantics.RepresentationSemantics k
-- open import Semantics.Concrete.RepresentableRelation k
open LiftDoublePoset
open ClockedCombinators k renaming (Δ to Del)
private
variable
ℓ ℓ' : Level
-- todo: doubleposet
open TyPrec
private
variable
R R' S S' T T' : Ty
Γ Γ' Δ Δ' : Ctx
γ γ' : Subst Δ Γ
-- γ' : Subst Δ' Γ'
V V' : Val Γ S
E F : EvCtx Γ S T
E' F' : EvCtx Γ' S' T'
M N : Comp Γ S
M' N' : Comp Γ' S'
C : Δ ⊑ctx Δ'
D : Γ ⊑ctx Γ'
c : S ⊑ S'
d : T ⊑ T'
module _ {ℓo : Level} where
{-# NON_COVERING #-}
⟦_⟧ty : Ty → DoublePoset ℓ-zero ℓ-zero ℓ-zero
⟦ nat ⟧ty = ℕ
⟦ dyn ⟧ty = DynP
⟦ S ⇀ T ⟧ty = ⟦ S ⟧ty ==> 𝕃 (⟦ T ⟧ty)
-- Typing context interpretation
{-# NON_COVERING #-}
⟦_⟧ctx : Ctx -> DoublePoset ℓ-zero ℓ-zero ℓ-zero -- Ctx → 𝓜.cat .ob
⟦ [] ⟧ctx = UnitDP -- 𝓜.𝟙
⟦ A ∷ Γ ⟧ctx = ⟦ Γ ⟧ctx ×dp ⟦ A ⟧ty -- ⟦ Γ ⟧ctx 𝓜.× ⟦ A ⟧ty
{-# NON_COVERING #-}
⟦_⟧S : Subst Δ Γ → DPMor ⟦ Δ ⟧ctx ⟦ Γ ⟧ctx -- 𝓜.cat [ ⟦ Δ ⟧ctx , ⟦ Γ ⟧ctx ]
{-# NON_COVERING #-}
⟦_⟧V : Val Γ S → DPMor ⟦ Γ ⟧ctx ⟦ S ⟧ty -- 𝓜.cat [ ⟦ Γ ⟧ctx , ⟦ S ⟧ty ]
{-# NON_COVERING #-}
⟦_⟧E : EvCtx Γ R S → DPMor (⟦ Γ ⟧ctx ×dp ⟦ R ⟧ty) (𝕃 ⟦ S ⟧ty) -- ???
-- 𝓜.Linear ⟦ Γ ⟧ctx [ ⟦ R ⟧ty , ⟦ S ⟧ty ]
{-# NON_COVERING #-}
⟦_⟧C : Comp Γ S → DPMor ⟦ Γ ⟧ctx (𝕃 ⟦ S ⟧ty) -- 𝓜.ClLinear [ ⟦ Γ ⟧ctx , ⟦ S ⟧ty ]
-- Substitutions
⟦ ids ⟧S = MonId -- 𝓜.cat .id
⟦ γ ∘s δ ⟧S = mCompU ⟦ γ ⟧S ⟦ δ ⟧S -- ⟦ γ ⟧S ∘⟨ 𝓜.cat ⟩ ⟦ δ ⟧S
⟦ ∘IdL {γ = γ} i ⟧S = eqDPMor (mCompU MonId ⟦ γ ⟧S) ⟦ γ ⟧S refl i -- eqDPMor (mCompU MonId ⟦ γ ⟧S) ⟦ γ ⟧S refl i -- 𝓜.cat .⋆IdR ⟦ γ ⟧S i
⟦ ∘IdR {γ = γ} i ⟧S = eqDPMor (mCompU ⟦ γ ⟧S MonId) ⟦ γ ⟧S refl i -- eqDPMor (mCompU ⟦ γ ⟧S MonId) ⟦ γ ⟧S refl i -- 𝓜.cat .⋆IdL ⟦ γ ⟧S i
⟦ ∘Assoc {γ = γ}{δ = δ}{θ = θ} i ⟧S =
eqDPMor (mCompU ⟦ γ ⟧S (mCompU ⟦ δ ⟧S ⟦ θ ⟧S)) (mCompU (mCompU ⟦ γ ⟧S ⟦ δ ⟧S) ⟦ θ ⟧S) refl i
-- 𝓜.cat .⋆Assoc ⟦ θ ⟧S ⟦ δ ⟧S ⟦ γ ⟧S i
⟦ !s ⟧S = UnitDP! -- 𝓜.!t
⟦ []η {γ = γ} i ⟧S = eqDPMor ⟦ γ ⟧S UnitDP! refl i -- 𝓜.𝟙η ⟦ γ ⟧S i
⟦ γ ,s V ⟧S = PairFun ⟦ γ ⟧S ⟦ V ⟧V -- ⟦ γ ⟧S 𝓜.,p ⟦ V ⟧V
⟦ wk ⟧S = π1 -- 𝓜.π₁
⟦ wkβ {δ = γ}{V = V} i ⟧S =
eqDPMor (mCompU π1 (PairFun ⟦ γ ⟧S ⟦ V ⟧V)) ⟦ γ ⟧S refl i -- -- 𝓜.×β₁ {f = ⟦ γ ⟧S}{g = ⟦ V ⟧V} i
⟦ ,sη {δ = γ} i ⟧S =
eqDPMor ⟦ γ ⟧S (PairFun (mCompU π1 ⟦ γ ⟧S) (mCompU π2 ⟦ γ ⟧S)) refl i -- -- 𝓜.×η {f = ⟦ γ ⟧S} i
⟦ isSetSubst γ γ' p q i j ⟧S =
DPMorIsSet ⟦ γ ⟧S ⟦ γ' ⟧S (cong ⟦_⟧S p) (cong ⟦_⟧S q) i j -- follows because MonFun is a set
-- Values
⟦ V [ γ ]v ⟧V = mCompU ⟦ V ⟧V ⟦ γ ⟧S
⟦ substId {V = V} i ⟧V =
eqDPMor (mCompU ⟦ V ⟧V MonId) ⟦ V ⟧V refl i
⟦ substAssoc {V = V}{δ = δ}{γ = γ} i ⟧V =
eqDPMor (mCompU ⟦ V ⟧V (mCompU ⟦ δ ⟧S ⟦ γ ⟧S))
(mCompU (mCompU ⟦ V ⟧V ⟦ δ ⟧S) ⟦ γ ⟧S)
refl i
⟦ var ⟧V = π2
⟦ varβ {δ = γ}{V = V} i ⟧V =
eqDPMor (mCompU π2 ⟦ γ ,s V ⟧S) ⟦ V ⟧V refl i
⟦ zro ⟧V = Zero
⟦ suc ⟧V = Suc
⟦ lda M ⟧V = Curry ⟦ M ⟧C
⟦ fun-η {V = V} i ⟧V = eqDPMor
⟦ V ⟧V
(Curry (mCompU (mCompU (mCompU App π2) PairAssocLR)
(PairFun (PairFun UnitDP! (mCompU ⟦ V ⟧V π1)) π2)))
(funExt (λ ⟦Γ⟧ -> eqDPMor _ _ refl)) i
⟦ isSetVal V V' p q i j ⟧V =
DPMorIsSet ⟦ V ⟧V ⟦ V' ⟧V (cong ⟦_⟧V p) (cong ⟦_⟧V q) i j
-- Evaluation Contexts
⟦ ∙E {Γ = Γ} ⟧E = mCompU mRet π2 -- mCompU mRet π2
⟦ E ∘E F ⟧E = mExt' _ ⟦ E ⟧E ∘m ⟦ F ⟧E
⟦ ∘IdL {E = E} i ⟧E =
eqDPMor (mExt' _ (mCompU mRet π2) ∘m ⟦ E ⟧E) ⟦ E ⟧E (funExt (λ x → monad-unit-r (DPMor.f ⟦ E ⟧E x))) i
⟦ ∘IdR {E = E} i ⟧E =
eqDPMor (mExt' _ ⟦ E ⟧E ∘m mCompU mRet π2) ⟦ E ⟧E (funExt (λ x → monad-unit-l _ _)) i
⟦ ∘Assoc {E = E}{F = F}{F' = F'} i ⟧E =
eqDPMor (mExt' _ ⟦ E ⟧E ∘m (mExt' _ ⟦ F ⟧E ∘m ⟦ F' ⟧E))
(mExt' _ (mExt' _ ⟦ E ⟧E ∘m ⟦ F ⟧E) ∘m ⟦ F' ⟧E)
(funExt (λ x → monad-assoc _ _ _)) i
⟦ E [ γ ]e ⟧E = mCompU ⟦ E ⟧E (PairFun (mCompU ⟦ γ ⟧S π1) π2)
⟦ substId {E = E} i ⟧E = eqDPMor (mCompU ⟦ E ⟧E (PairFun (mCompU MonId π1) π2)) ⟦ E ⟧E refl i
⟦ substAssoc {E = E}{γ = γ}{δ = δ} i ⟧E =
eqDPMor (mCompU ⟦ E ⟧E (PairFun (mCompU (mCompU ⟦ γ ⟧S ⟦ δ ⟧S) π1) π2))
(mCompU (mCompU ⟦ E ⟧E (PairFun (mCompU ⟦ γ ⟧S π1) π2)) (PairFun (mCompU ⟦ δ ⟧S π1) π2))
refl i
-- For some reason, using refl, or even funExt with refl, in the third argument
-- to eqDPMor below leads to an error when lossy unification is turned on.
-- This seems to be fixed by using congS η refl
⟦ ∙substDist {γ = γ} i ⟧E = eqDPMor
(mCompU (mCompU mRet π2)
(PairFun (mCompU ⟦ γ ⟧S π1) π2)) (mCompU mRet π2)
(funExt (λ {(⟦Γ⟧ , ⟦R⟧) -> congS η refl})) i
⟦ ∘substDist {E = E}{F = F}{γ = γ} i ⟧E =
eqDPMor (mCompU (mExt' _ ⟦ E ⟧E ∘m ⟦ F ⟧E) (PairFun (mCompU ⟦ γ ⟧S π1) π2))
(mExt' _ (mCompU ⟦ E ⟧E (PairFun (mCompU ⟦ γ ⟧S π1) π2)) ∘m mCompU ⟦ F ⟧E (PairFun (mCompU ⟦ γ ⟧S π1) π2))
refl i
-- (E ∘E F) [ γ ]e ≡ (E [ γ ]e) ∘E (F [ γ ]e)
⟦ bind M ⟧E = ⟦ M ⟧C
-- E ≡ bind (E [ wk ]e [ retP [ !s ,s var ]cP ]∙P)
⟦ ret-η {Γ}{R}{S}{E} i ⟧E =
eqDPMor ⟦ E ⟧E (Bind (⟦ Γ ⟧ctx ×dp ⟦ R ⟧ty)
(mCompU (mCompU mRet π2) (PairFun UnitDP! π2))
(mCompU ⟦ E ⟧E (PairFun (mCompU π1 π1) π2)))
(funExt (λ x → sym (ext-eta _ _))) i
{-- explicit i where
explicit : ⟦ E ⟧E
≡ 𝓜.bindP (𝓜.pull 𝓜.π₁ ⟪ ⟦ E ⟧E ⟫) ∘⟨ 𝓜.cat ⟩ (𝓜.cat .id 𝓜.,p (𝓜.retP ∘⟨ 𝓜.cat ⟩ (𝓜.!t 𝓜.,p 𝓜.π₂)))
explicit = sym (cong₂ (comp' 𝓜.cat) (sym 𝓜.bind-natural) refl
∙ sym (𝓜.cat .⋆Assoc _ _ _)
∙ cong₂ (comp' 𝓜.cat) refl (𝓜.,p-natural ∙ cong₂ 𝓜._,p_ (sym (𝓜.cat .⋆Assoc _ _ _) ∙ cong₂ (comp' 𝓜.cat) refl 𝓜.×β₁ ∙ 𝓜.cat .⋆IdL _)
(𝓜.×β₂ ∙ cong₂ (comp' 𝓜.cat) refl (cong₂ 𝓜._,p_ 𝓜.𝟙η' refl) ∙ 𝓜.η-natural {γ = 𝓜.!t}))
∙ 𝓜.bindP-l) --}
--⟦ dn S⊑T ⟧E = {!!} -- ⟦ S⊑T .ty-prec ⟧p ∘⟨ 𝓜.cat ⟩ 𝓜.π₂
⟦ isSetEvCtx E F p q i j ⟧E = DPMorIsSet ⟦ E ⟧E ⟦ F ⟧E (cong ⟦_⟧E p) (cong ⟦_⟧E q) i j -- 𝓜.cat .isSetHom ⟦ E ⟧E ⟦ F ⟧E (cong ⟦_⟧E p) (cong ⟦_⟧E q) i j
matchNat-helper : {ℓX ℓ'X ℓ''X ℓY ℓ'Y ℓ''Y : Level} {X : DoublePoset ℓX ℓ'X ℓ''X} {Y : DoublePoset ℓY ℓ'Y ℓ''Y} ->
DPMor X Y -> DPMor (X ×dp ℕ) Y -> DPMor (X ×dp ℕ) Y
matchNat-helper fZ fS =
record { f = λ { (Γ , zero) → DPMor.f fZ Γ ;
(Γ , suc n) → DPMor.f fS (Γ , n) } ;
isMon = λ { {Γ1 , zero} {Γ2 , zero} (Γ1≤Γ2 , n1≤n2) → DPMor.isMon fZ Γ1≤Γ2 ;
{Γ1 , zero} {Γ2 , suc n2} (Γ1≤Γ2 , n1≤n2) → rec (znots n1≤n2) ;
{Γ1 , suc n1} {Γ2 , zero} (Γ1≤Γ2 , n1≤n2) → rec (snotz n1≤n2) ;
{Γ1 , suc n1} {Γ2 , suc n2} (Γ1≤Γ2 , n1≤n2) → DPMor.isMon fS (Γ1≤Γ2 , injSuc n1≤n2)} ;
pres≈ = λ { {Γ1 , zero} {Γ2 , zero} (Γ1≈Γ2 , n1≈n2) → DPMor.pres≈ fZ Γ1≈Γ2 ;
{Γ1 , zero} {Γ2 , suc n2} (Γ1≈Γ2 , n1≈n2) → rec (znots n1≈n2) ;
{Γ1 , suc n1} {Γ2 , zero} (Γ1≈Γ2 , n1≈n2) → rec (snotz n1≈n2) ;
{Γ1 , suc n1} {Γ2 , suc n2} (Γ1≈Γ2 , n1≈n2) → DPMor.pres≈ fS (Γ1≈Γ2 , injSuc n1≈n2) }
}
-- Computations
⟦ _[_]∙ {Γ = Γ} E M ⟧C = Bind ⟦ Γ ⟧ctx ⟦ M ⟧C ⟦ E ⟧E
⟦ plugId {M = M} i ⟧C =
eqDPMor (Bind _ ⟦ M ⟧C (mCompU mRet π2)) ⟦ M ⟧C (funExt (λ x → monad-unit-r (U ⟦ M ⟧C x))) i
⟦ plugAssoc {F = F}{E = E}{M = M} i ⟧C =
eqDPMor (Bind _ ⟦ M ⟧C (mExt' _ ⟦ F ⟧E ∘m ⟦ E ⟧E))
(Bind _ (Bind _ ⟦ M ⟧C ⟦ E ⟧E) ⟦ F ⟧E)
(funExt (λ ⟦Γ⟧ → sym (monad-assoc
(λ z → DPMor.f ⟦ E ⟧E (⟦Γ⟧ , z))
(DPMor.f (π2 .DPMor.f (⟦Γ⟧ , U (Curry ⟦ F ⟧E) ⟦Γ⟧)))
(DPMor.f ⟦ M ⟧C ⟦Γ⟧))))
i
⟦ M [ γ ]c ⟧C = mCompU ⟦ M ⟧C ⟦ γ ⟧S -- ⟦ M ⟧C ∘⟨ 𝓜.cat ⟩ ⟦ γ ⟧S
⟦ substId {M = M} i ⟧C =
eqDPMor (mCompU ⟦ M ⟧C MonId) ⟦ M ⟧C refl i -- 𝓜.cat .⋆IdL ⟦ M ⟧C i
⟦ substAssoc {M = M}{δ = δ}{γ = γ} i ⟧C =
eqDPMor (mCompU ⟦ M ⟧C (mCompU ⟦ δ ⟧S ⟦ γ ⟧S))
(mCompU (mCompU ⟦ M ⟧C ⟦ δ ⟧S) ⟦ γ ⟧S)
refl i -- 𝓜.cat .⋆Assoc ⟦ γ ⟧S ⟦ δ ⟧S ⟦ M ⟧C i
⟦ substPlugDist {E = E}{M = M}{γ = γ} i ⟧C =
eqDPMor (mCompU (Bind _ ⟦ M ⟧C ⟦ E ⟧E) ⟦ γ ⟧S) (Bind _ (mCompU ⟦ M ⟧C ⟦ γ ⟧S)
(mCompU ⟦ E ⟧E (PairFun (mCompU ⟦ γ ⟧S π1) π2)))
refl i
⟦ err {S = S} ⟧C = K _ ℧ -- mCompU mRet {!!} -- 𝓜.err
⟦ strictness {E = E} i ⟧C =
eqDPMor (Bind _ (mCompU (K UnitDP ℧) UnitDP!) ⟦ E ⟧E)
(mCompU (K UnitDP ℧) UnitDP!)
(funExt (λ _ -> ext-err _)) i -- 𝓜.℧-homo ⟦ E ⟧E i
-- i = i0 ⊢ Bind ⟦ Γ ⟧ctx (mCompU (K UnitP ℧) UnitP!) ⟦ E ⟧E
-- i = i1 ⊢ mCompU (K UnitP ℧) UnitP!
⟦ ret ⟧C = mCompU mRet π2
⟦ ret-β {S}{T}{Γ}{M = M} i ⟧C = eqDPMor (Bind (⟦ Γ ⟧ctx ×dp ⟦ T ⟧ty)
(mCompU (mCompU mRet π2) (PairFun UnitDP! π2))
(mCompU ⟦ M ⟧C (PairFun (mCompU π1 π1) π2))) ⟦ M ⟧C (funExt (λ x → monad-unit-l _ _)) i
⟦ app ⟧C = mCompU (mCompU App π2) PairAssocLR
⟦ fun-β {M = M} i ⟧C =
eqDPMor (mCompU (mCompU (mCompU App π2) PairAssocLR)
(PairFun (PairFun UnitDP! (mCompU (Curry ⟦ M ⟧C) π1)) π2))
⟦ M ⟧C refl i
⟦ matchNat Mz Ms ⟧C = matchNat-helper ⟦ Mz ⟧C ⟦ Ms ⟧C
⟦ matchNatβz Mz Ms i ⟧C = eqDPMor
(mCompU (matchNat-helper ⟦ Mz ⟧C ⟦ Ms ⟧C)
(PairFun MonId (mCompU Zero UnitDP!)))
⟦ Mz ⟧C
refl i
⟦ matchNatβs Mz Ms i ⟧C = eqDPMor
(mCompU (matchNat-helper ⟦ Mz ⟧C ⟦ Ms ⟧C)
(PairFun π1 (mCompU Suc (PairFun UnitDP! π2))))
⟦ Ms ⟧C refl i
⟦ matchNatη {M = M} i ⟧C = eqDPMor
⟦ M ⟧C
(matchNat-helper
(mCompU ⟦ M ⟧C (PairFun MonId (mCompU Zero UnitDP!)))
(mCompU ⟦ M ⟧C (PairFun π1 (mCompU Suc (PairFun UnitDP! π2)))))
(funExt (λ { (⟦Γ⟧ , zero) → refl ;
(⟦Γ⟧ , suc n) → refl}))
i
⟦ isSetComp M N p q i j ⟧C = DPMorIsSet ⟦ M ⟧C ⟦ N ⟧C (cong ⟦_⟧C p) (cong ⟦_⟧C q) i j -- 𝓜.cat .isSetHom ⟦ M ⟧C ⟦ N ⟧C (cong ⟦_⟧C p) (cong ⟦_⟧C q) i j
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment