Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
23292a06
Commit
23292a06
authored
1 year ago
by
Max New
Browse files
Options
Downloads
Patches
Plain Diff
fix build issues, progress on CBPV semantics
parent
5afdfd79
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
paper-new/appendix.tex
+36
-0
36 additions, 0 deletions
paper-new/appendix.tex
paper-new/intro.tex
+1
-1
1 addition, 1 deletion
paper-new/intro.tex
with
37 additions
and
1 deletion
paper-new/appendix.tex
+
36
−
0
View file @
23292a06
...
...
@@ -111,6 +111,42 @@ precision:
\section
{
Call-by-push-value
}
\subsection
{
Morphisms of CBPV Models
}
There are two relevant notions of
\emph
{
morphism
}
of CBPV models:
\emph
{
strict
}
and
\emph
{
lax
}
.
% morphisms of CBPV models
Given call-by-push-value models
$
\mathcal
M
_
1
=
(
\mathcal
V
_
1
,
\mathcal
E
_
1
,
\arr
_
1
, U
_
1
, F
_
1
)
$
and
$
\mathcal
M
_
2
=
(
\mathcal
V
_
2
,
\mathcal
E
_
2
,
\arr
_
2
, U
_
2
, F
_
2
)
$
,
A
\emph
{
strict
}
morphism
$
G
$
from
$
M
_
1
$
to
$
M
_
2
$
is given by a pair of functors
$
G
_{
\mathcal
{
V
}}
: V
_
1
\to
V
_
2
$
and
$
G
_{
\mathcal
{
E
}}
: E
_
1
\to
E
_
2
$
that strictly presere the constructors:
\begin{enumerate}
\item
$
G
_{
\mathcal
{
E
}}
\circ
F
_
1
=
F
_
2
\circ
G
_{
\mathcal
{
V
}}$
\item
$
G
_{
\mathcal
{
V
}}
\circ
U
_
1
=
U
_
2
\circ
G
_{
\mathcal
{
E
}}$
\item
$
G
_{
\mathcal
{
E
}}
(
A
\arr
_
1
B
)
=
G
_{
\mathcal
{
V
}}
(
A
)
\arr
_
2
G
_{
\mathcal
{
E
}}
(
B
)
$
\item
$
G
_{
\mathcal
{
V
}}
(
A
_
1
\times
_
1
A
_
2
)
=
G
_{
\mathcal
{
V
}}
(
A
_
1
)
\times
_
2
G
_{
\mathcal
{
V
}}
(
A
_
2
)
$
\item
$
G
_{
\mathcal
{
V
}}
(
1
_
1
)
=
1
_
2
$
\end{enumerate}
As well as strictly preserving the corresponding universal morphisms
and coherence isomorphisms.
A lax morphism instead preserves these only up to transformation
\begin{enumerate}
\item
$
G
_{
\mathcal
{
E
}}
\circ
F
_
1
\Rightarrow
F
_
2
\circ
G
_{
\mathcal
{
V
}}$
\item
$
G
_{
\mathcal
{
V
}}
\circ
U
_
1
\Rightarrow
U
_
2
\circ
G
_{
\mathcal
{
E
}}$
\item
$
G
_{
\mathcal
{
E
}}
(
A
\arr
_
1
B
)
\Rightarrow
G
_{
\mathcal
{
V
}}
(
A
)
\arr
_
2
G
_{
\mathcal
{
E
}}
(
B
)
$
\item
$
G
_{
\mathcal
{
V
}}
(
A
_
1
\times
_
1
A
_
2
)
\Rightarrow
G
_{
\mathcal
{
V
}}
(
A
_
1
)
\times
_
2
G
_{
\mathcal
{
V
}}
(
A
_
2
)
$
\item
$
G
_{
\mathcal
{
V
}}
(
1
_
1
)
\Rightarrow
1
_
2
$
\end{enumerate}
Additionally a lax morphism should have a relationship between these
transformations and the universal morphisms, but we will only consider
lax morphisms of thin categories, where such conditions hold
trivially.
\subsection
{
Kleisli Actions of CBPV Type Constructors
}
In CBPV models, all the type constructors are interpreted as functors:
\begin{enumerate}
\item
$
\to
:
\op\calV
\times
\calE
\to
\calE
$
...
...
This diff is collapsed.
Click to expand it.
paper-new/intro.tex
+
1
−
1
View file @
23292a06
...
...
@@ -155,7 +155,7 @@ exhibit the categorical construction. New and Licata
\cite
{
new-licata18
}
present such a model using categories of
$
\omega
$
-CPOs, and this model was extended by Lennon-Bertrand,
Maillard, Tabareau and Tanter to prove graduality of a gradual
dependently typed calculus
$
\textrm
{
CastCIC
}^{
\mathcalG
}$
. This
dependently typed calculus
$
\textrm
{
CastCIC
}^{
\mathcal
G
}$
. This
domain-theoretic approach meets our criteria of being a semantic
framework for proving graduality, but suffers from the limitations of
classical domain theory: the inability to model viciously
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment