From 23292a06dda5265982df0bc07f2bea0155e0ced1 Mon Sep 17 00:00:00 2001 From: Max New <maxsnew@gmail.com> Date: Thu, 25 Jan 2024 14:42:22 -0500 Subject: [PATCH] fix build issues, progress on CBPV semantics --- paper-new/appendix.tex | 36 ++++++++++++++++++++++++++++++++++++ paper-new/intro.tex | 2 +- 2 files changed, 37 insertions(+), 1 deletion(-) diff --git a/paper-new/appendix.tex b/paper-new/appendix.tex index 9c179c7..9cb558e 100644 --- a/paper-new/appendix.tex +++ b/paper-new/appendix.tex @@ -111,6 +111,42 @@ precision: \section{Call-by-push-value} +\subsection{Morphisms of CBPV Models} + +There are two relevant notions of \emph{morphism} of CBPV models: +\emph{strict} and \emph{lax}. +% morphisms of CBPV models +Given call-by-push-value models +$\mathcal M_1 = (\mathcal V_1, \mathcal E_1, \arr_1, U_1, F_1)$ and +$\mathcal M_2 = (\mathcal V_2, \mathcal E_2, \arr_2, U_2, F_2)$, +A \emph{strict} morphism $G$ from $M_1$ to $M_2$ is given by a pair of functors +$G_{\mathcal{V}}: V_1 \to V_2$ and $G_{\mathcal{E}} : E_1 \to E_2$ +that strictly presere the constructors: +\begin{enumerate} + \item $G_{\mathcal{E}} \circ F_1 = F_2 \circ G_{\mathcal{V}}$ + \item $G_{\mathcal{V}} \circ U_1 = U_2 \circ G_{\mathcal{E}}$ + \item $G_{\mathcal{E}}(A \arr_1 B) = G_{\mathcal{V}}(A) \arr_2 G_{\mathcal{E}}(B)$ + \item $G_{\mathcal{V}}(A_1 \times_1 A_2) = G_{\mathcal{V}}(A_1) \times_2 G_{\mathcal{V}}(A_2)$ + \item $G_{\mathcal{V}}(1_1) = 1_2$ +\end{enumerate} +As well as strictly preserving the corresponding universal morphisms +and coherence isomorphisms. + +A lax morphism instead preserves these only up to transformation +\begin{enumerate} + \item $G_{\mathcal{E}} \circ F_1 \Rightarrow F_2 \circ G_{\mathcal{V}}$ + \item $G_{\mathcal{V}} \circ U_1 \Rightarrow U_2 \circ G_{\mathcal{E}}$ + \item $G_{\mathcal{E}}(A \arr_1 B) \Rightarrow G_{\mathcal{V}}(A) \arr_2 G_{\mathcal{E}}(B)$ + \item $G_{\mathcal{V}}(A_1 \times_1 A_2) \Rightarrow G_{\mathcal{V}}(A_1) \times_2 G_{\mathcal{V}}(A_2)$ + \item $G_{\mathcal{V}}(1_1) \Rightarrow 1_2$ +\end{enumerate} +Additionally a lax morphism should have a relationship between these +transformations and the universal morphisms, but we will only consider +lax morphisms of thin categories, where such conditions hold +trivially. + +\subsection{Kleisli Actions of CBPV Type Constructors} + In CBPV models, all the type constructors are interpreted as functors: \begin{enumerate} \item $\to : \op\calV \times \calE \to \calE$ diff --git a/paper-new/intro.tex b/paper-new/intro.tex index 3d6a3bc..d822b4a 100644 --- a/paper-new/intro.tex +++ b/paper-new/intro.tex @@ -155,7 +155,7 @@ exhibit the categorical construction. New and Licata \cite{new-licata18} present such a model using categories of $\omega$-CPOs, and this model was extended by Lennon-Bertrand, Maillard, Tabareau and Tanter to prove graduality of a gradual -dependently typed calculus $\textrm{CastCIC}^{\mathcalG}$. This +dependently typed calculus $\textrm{CastCIC}^{\mathcal G}$. This domain-theoretic approach meets our criteria of being a semantic framework for proving graduality, but suffers from the limitations of classical domain theory: the inability to model viciously -- GitLab