Skip to content
Snippets Groups Projects
Commit 03d5a6ff authored by akai's avatar akai
Browse files

update LaterProperties

parent 7b890a62
Branches
No related tags found
No related merge requests found
......@@ -49,11 +49,13 @@ path-x-f-next-x {k = k} {A = A} {f = f} = (fix f , fix-eq f) , unique
unique : (y : Σ[ x ∈ A ] (x ≡ f (next x))) → (fix f , fix-eq f) ≡ y
unique (h , p-h) = ΣPathP (q , eq)
where
q' = λ r ->
fix f ≡⟨ fix-eq f ⟩
f (next (fix f)) ≡⟨ cong f (λ i -> λ t -> r t i) ⟩ -- or: ≡⟨ (λ i -> f (λ t -> r t i)) ⟩
f (next h) ≡⟨ sym p-h ⟩
h ∎
-- q'' = λ r ->
-- fix f ≡⟨ fix-eq f ⟩
-- f (next (fix f)) ≡⟨ cong f (λ i -> λ t -> r t i) ⟩ -- or: ≡⟨ (λ i -> f (λ t -> r t i)) ⟩
-- f (next h) ≡⟨ sym p-h ⟩
-- h ∎
q' = λ r -> (fix-eq f) ∙ cong f (λ i -> λ t -> r t i) ∙ sym p-h
-- r : ▹ (fix f ≡ h), so (λ i -> f (λ t -> r t i)) has type
-- f (λ t -> fix f) ≡ f (λ t -> h) i.e.
......@@ -64,11 +66,14 @@ path-x-f-next-x {k = k} {A = A} {f = f} = (fix f , fix-eq f) , unique
lem : sym (fix-eq f) ∙ (q' (next q)) ∙ p-h ≡ cong f (λ i -> λ t -> q i)
lem =
sym (fix-eq f) ∙ (q' (next q)) ∙ p-h ≡⟨ {!!} ⟩
sym (fix-eq f) ∙ (fix-eq f ∙ cong f (λ i -> λ t -> q i) ∙ sym p-h) ∙ p-h ≡⟨ {!!} ⟩
(sym (fix-eq f) ∙ fix-eq f) ∙ cong f (λ i -> λ t -> q i) ∙ (sym p-h ∙ p-h) ≡⟨ {!!} ⟩
{!!} ≡⟨ {!!} ⟩
{!!} ≡⟨ {!!} ⟩
sym (fix-eq f) ∙ (q' (next q)) ∙ p-h ≡⟨ refl ⟩
sym (fix-eq f) ∙ (fix-eq f ∙ cong f (λ i -> λ t -> q i) ∙ sym p-h) ∙ p-h ≡⟨ (λ j -> (sym (fix-eq f)) ∙ assoc (fix-eq f) (cong f (λ i -> λ t -> q i) ∙ sym p-h) p-h (~ j)) ⟩
sym (fix-eq f) ∙ fix-eq f ∙ (cong f (λ i -> λ t -> q i) ∙ sym p-h) ∙ p-h ≡⟨ (λ j -> (sym (fix-eq f) ∙ fix-eq f ∙ assoc (cong f (λ i -> λ t -> q i)) (sym p-h) p-h (~ j))) ⟩
sym (fix-eq f) ∙ fix-eq f ∙ cong f (λ i -> λ t -> q i) ∙ sym p-h ∙ p-h ≡⟨ refl ⟩
sym (fix-eq f) ∙ fix-eq f ∙ cong f (λ i -> λ t -> q i) ∙ (sym p-h ∙ p-h) ≡⟨ assoc (sym (fix-eq f)) (fix-eq f) (cong f (λ i -> λ t -> q i) ∙ (sym p-h ∙ p-h)) ⟩
(sym (fix-eq f) ∙ fix-eq f) ∙ cong f (λ i -> λ t -> q i) ∙ (sym p-h ∙ p-h) ≡⟨ (λ j -> lCancel (fix-eq f) j ∙ cong f (λ i -> λ t -> q i) ∙ lCancel p-h j) ⟩
refl ∙ cong f (λ i -> λ t -> q i) ∙ refl ≡⟨ (λ j -> refl ∙ rUnit (cong f (λ i -> λ t -> q i)) (~ j)) ⟩
refl ∙ cong f (λ i -> λ t -> q i) ≡⟨ sym (lUnit (cong f (λ i -> λ t -> q i))) ⟩
(cong f λ i -> λ t -> q i) ∎
eq' : PathP (λ i → q i ≡ f (next (q i))) (fix-eq f) p-h
......@@ -76,7 +81,9 @@ path-x-f-next-x {k = k} {A = A} {f = f} = (fix f , fix-eq f) , unique
eq : PathP (λ i → q i ≡ f (next (q i))) (fix-eq f) p-h
eq = transport (sym (PathP≡doubleCompPathˡ q (fix-eq f) p-h (cong f (λ i -> λ t -> q i))))
(doubleCompPath≡compPath (sym q) (fix-eq f) (cong f (λ i -> λ t -> q i)) ∙ {!!})
(doubleCompPath≡compPath (sym q) (fix-eq f) (cong f (λ i -> λ t -> q i)) ∙ (λ i → {!!}))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment