Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
7b890a62
Commit
7b890a62
authored
1 year ago
by
akai
Browse files
Options
Downloads
Patches
Plain Diff
update PosetWithPtb
parent
fbab1907
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Semantics/Concrete/PosetWithPtb.agda
+76
-52
76 additions, 52 deletions
...ions/guarded-cubical/Semantics/Concrete/PosetWithPtb.agda
with
76 additions
and
52 deletions
formalizations/guarded-cubical/Semantics/Concrete/PosetWithPtb.agda
+
76
−
52
View file @
7b890a62
...
...
@@ -20,6 +20,7 @@ open import Cubical.Foundations.Function
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.Semigroup.Base
open import Cubical.Algebra.CommMonoid.Base
open import Cubical.Data.Sigma
open import Cubical.Data.Nat renaming (ℕ to Nat) hiding (_·_ ; _^_)
...
...
@@ -56,28 +57,30 @@ isSetMonoid M = M .snd .isMonoid .isSemigroup .is-set
open IsMonoid
open IsSemigroup
monoidId : (M : Monoid ℓ) -> ⟨ M ⟩
monoidId M = M .snd .ε
where open MonoidStr
_×M_ : Monoid ℓ -> Monoid ℓ' -> Monoid (ℓ-max ℓ ℓ')
M1 ×M M2 = makeMonoid
commMonoidId : (M : CommMonoid ℓ) -> ⟨ M ⟩
commMonoidId M = M .snd .ε
where open CommMonoidStr
_×M_ : CommMonoid ℓ -> CommMonoid ℓ' -> CommMonoid (ℓ-max ℓ ℓ')
M1 ×M M2 = makeCommMonoid
{M = ⟨ M1 ⟩ × ⟨ M2 ⟩}
(
m
onoidId M1 ,
m
onoidId M2)
(λ { (m1 , m2) (m1' , m2') -> (m1 ·M1 m1') , (m2 ·M2 m2')
})
(isSet× (isSetMonoid M1) (isSetMonoid M2))
(λ { (m1 , m2) (m1' , m2') (m1'' , m2'')
→
≡-× (M1 .snd .isMonoid .isSemigroup .·Assoc m1 m1' m1'')
(
(M2 .snd .isMonoid .isSemigroup .·Assoc m2 m2' m2'')
)
})
(
commM
onoidId M1 ,
commM
onoidId M2)
(λ { (m1 , m2) (m1' , m2') -> (m1 ·M1 m1') , (m2 ·M2 m2')})
(isSet× (isSet
Comm
Monoid M1) (isSet
Comm
Monoid M2))
(λ { (m1 , m2) (m1' , m2') (m1'' , m2'')
->
≡-× (M1 .snd .isMonoid .isSemigroup .·Assoc m1 m1' m1'') (M2 .snd .isMonoid .isSemigroup .·Assoc m2 m2' m2'') })
(λ { (m1 , m2) -> ≡-× (M1 .snd .isMonoid .·IdR m1) ((M2 .snd .isMonoid .·IdR m2)) })
(
λ { (m1 , m2) -> ≡-× (M1 .snd .
isMonoid .·IdL
m1)
(
(M2 .snd .
isMonoid .·IdL
m2
)
) }
)
where
open MonoidStr
open IsMonoid
open IsSemigroup
_·M1_ = M1 .snd ._·_
_·M2_ = M2 .snd ._·_
λ { (m1 , m2)
(m1' , m2')
-> ≡-× (M1 .snd .
·Comm m1
m1
'
) (M2 .snd .
·Comm m2
m2
'
) }
where
open
Comm
MonoidStr
open IsMonoid
open IsSemigroup
_·M1_ = M1 .snd ._·_
_·M2_ = M2 .snd ._·_
-- Monoid of all monotone endofunctions on a poset
EndoMonFun : (X : Poset ℓ ℓ') -> Monoid (ℓ-max ℓ ℓ')
...
...
@@ -90,8 +93,8 @@ EndoMonFun X = makeMonoid {M = MonFun X X} Id mCompU MonFunIsSet
record PosetWithPtb (ℓ ℓ' ℓ'' : Level) : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max (ℓ-suc ℓ') (ℓ-suc ℓ''))) where
field
P : Poset ℓ ℓ'
Perturb : Monoid ℓ''
perturb : MonoidHom Perturb (EndoMonFun P)
Perturb :
Comm
Monoid ℓ''
perturb : MonoidHom
(CommMonoid→Monoid Perturb) (EndoMonFun P) --
Perturb (EndoMonFun P)
--TODO: needs to be injective map
-- Perturb : ⟨ EndoMonFun P ⟩
...
...
@@ -105,33 +108,48 @@ open PosetWithPtb
_==>PWP_ : PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb (ℓ-max ℓ ℓ') (ℓ-max ℓ ℓ') ℓ''
A ==>PWP B = record {
P = (A .P) ==> (B .P) ;
Perturb = A .Perturb ×M B .Perturb ;
Perturb = A .Perturb ×M B .Perturb ;
-- A .Perturb ×M B .Perturb ;
perturb =
(λ { (δᴬ , δᴮ) -> ptb-fun A δᴬ ~-> ptb-fun B δᴮ }) ,
monoidequiv (eqMon _ _ (funExt (λ g -> let pfA = cong (MonFun.f) (perturb A .snd .presε) in
let pfB = cong (MonFun.f) (perturb B .snd .presε) in
eqMon _ _ λ i -> pfB i ∘ MonFun.f g ∘ pfA i)))
(λ ma mb → {!!}) }
(λ { (ma , mb) (ma' , mb') → eqMon _ _ (funExt (λ g ->
let pfA = cong MonFun.f (perturb A .snd .pres· ma ma') in
let pfB = cong MonFun.f (perturb B .snd .pres· mb mb') in
let ma-comm = (MonFun.f (ptb-fun A ma)) ∘ (MonFun.f (ptb-fun A ma')) ≡⟨ sym (cong (MonFun.f) (perturb A .snd .pres· ma ma')) ⟩
MonFun.f (fst (perturb A) ((CommMonoid→Monoid (Perturb A) .snd MonoidStr.· ma) ma'))
≡⟨ (λ i -> MonFun.f (ptb-fun A (Perturb A .snd .isCommMonoid .·Comm ma ma' i)))⟩
_ ≡⟨ cong MonFun.f (perturb A .snd .pres· ma' ma) ⟩
_ ∎ in
eqMon _ _ ((λ i -> pfB i ∘ MonFun.f g ∘ pfA i) ∙ (λ i -> MonFun.f (ptb-fun B mb) ∘ MonFun.f (ptb-fun B mb') ∘ MonFun.f g ∘ ma-comm i)) )) } ) }
where
open IsMonoidHom
open CommMonoidStr
open IsCommMonoid
-- Monoid of natural numbers with addition
nat-monoid : Monoid ℓ-zero
nat-monoid = makeMonoid {M = Nat} zero _+_ isSetℕ +-assoc +-zero
(λ x -> refl)
nat-monoid :
Comm
Monoid ℓ-zero
nat-monoid = make
Comm
Monoid {M = Nat} zero _+_ isSetℕ +-assoc +-zero
+-comm
open ClockedCombinators k
δ-splits-n : {A : Type ℓ} -> ∀ (n n' : Nat) -> (δ {X = A} ^ n) ∘ (δ ^ n') ≡ δ ^ (n + n')
δ-splits-n zero n' = ∘-idʳ (δ ^ n')
δ-splits-n (suc n) n' = ∘-assoc δ (δ ^ n) (δ ^ n') ∙ cong (λ a -> δ ∘ a) (δ-splits-n n n')
𝕃PWP : PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb ℓ ℓ' ℓ''
𝕃PWP A = record {
P = LiftPoset.𝕃 (A .P) ;
Perturb = nat-monoid ×M A .Perturb ;
perturb =
(λ ma →
fix f'
ma) ,
monoidequiv (eqMon (ptb-fun {!!} {!!}) MonId {!refl!})
{!!} }
fix f' , -- f' (next f) /
fix f'
fix
{!!} }
where
MA = nat-monoid ×M A .Perturb
open LiftPoset
open IsMonoidHom
f' : ▹ (⟨ MA ⟩ -> MonFun (𝕃 (A .P)) (𝕃 (A .P))) ->
(⟨ MA ⟩ -> MonFun (𝕃 (A .P)) (𝕃 (A .P)))
f' rec (n , ma) = record {
...
...
@@ -139,8 +157,32 @@ open ClockedCombinators k
℧ -> (δ ^ n) ℧ ;
(θ la~) -> θ (λ t -> MonFun.f (rec t ((n , ma))) (la~ t))} ;
isMon = λ x → {!!} }
f : ⟨ MA ⟩ -> MonFun (𝕃 (A .P)) (𝕃 (A .P))
f ma = fix f' ma
unfold-f : f ≡ f' (next f)
unfold-f = fix-eq f'
δ-fun : ∀ (n : Nat) (ma : ⟨ MA ⟩) -> (δ ^ n) ∘ (MonFun.f (f' (next f) ma)) ≡ (MonFun.f (f' (next f) ma)) ∘ (δ ^ n) -- (h ∘ (δ ^ n)) ≡ ((δ ^ n) ∘ h)
δ-fun zero ma = refl
δ-fun (suc n) ma = funExt (λ la -> cong δ (funExt⁻ (δ-fun n ma) la ∙ λ i -> MonFun.f (sym unfold-f i ma) ((δ ^ n) la)))
{-
δ-fun : ∀ (n : Nat) (ma : ⟨ MA ⟩) -> mCompU (Δ ^m n) (f' (next f) ma) ≡ mCompU (f' (next f) ma) (Δ ^m n) -- (h ∘ (δ ^ n)) ≡ ((δ ^ n) ∘ h)
δ-fun zero ma = refl
δ-fun (suc n) ma = eqMon _ _ (funExt (λ a -> cong δ {!funExt⁻ (cong MonFun.f (δ-fun n ma)) a!}))
-}
isHom' : ( ▹ IsMonoidHom (CommMonoid→Monoid (nat-monoid ×M A .Perturb) .snd) (f' (next f)) (EndoMonFun (𝕃 (A .P)) .snd))
-> IsMonoidHom (CommMonoid→Monoid (nat-monoid ×M A .Perturb) .snd) (f' (next f)) (EndoMonFun (𝕃 (A .P)) .snd)
isHom' IH = monoidequiv
(eqMon _ _ (funExt (λ { (η a) -> {!!} ≡⟨ {!!} ⟩ {!!};
(θ la) -> {!!}; μ -> {!!} })))
λ { (n , ma) (n' , ma') → eqMon _ _ (funExt λ { (η a) -> {!!} ; (θ la) -> {!!}; μ -> {!!} })}
--MonFun A A' -> MonFun B B' -> MonFun (A × B) (A'× B')
_×PWP_ : PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb ℓ (ℓ-max ℓ' ℓ') ℓ''
...
...
@@ -150,34 +192,19 @@ A ×PWP B = record {
perturb =
(λ { (ma , mb) -> PairFun (mCompU (ptb-fun A ma) π1) (mCompU (ptb-fun B mb) π2) }),
monoidequiv
(eqMon (PairFun
(mCompU (perturb A .fst (A .Perturb .snd .MonoidStr.ε)) π1)
(mCompU (perturb B .fst (B .Perturb .snd .MonoidStr.ε)) π2)) Id (funExt (λ { (a , b) →
(eqMon _ _
(funExt (λ { (a , b) →
≡-× (funExt⁻ (cong MonFun.f (perturb A .snd .presε)) a)
(funExt⁻ (cong MonFun.f (perturb B .snd .presε)) b) })))
λ { (ma , mb) (ma' , mb') →
eqMon _ _
(funExt (λ { (a , b ) -> ≡-× (funExt⁻ (cong MonFun.f (perturb A .snd .pres· ma ma')) a)
(funExt⁻ (cong MonFun.f (perturb B .snd .pres· mb mb')) b) })) }
-- λ { (ma , mb) (ma' , mb') → eqMon (ptb-fun {!? ×PWP ?!} {!!}) (mCompU (ptb-fun {!!} {!!}) (ptb-fun {!!} {!!})) {!!} }
(funExt⁻ (cong MonFun.f (perturb B .snd .pres· mb mb')) b) })) }
}
where
open MonoidStr
open IsMonoidHom
{-
PairFun
(mCompU (perturb A .fst (A .Perturb .snd ._·_ ma ma')) π1)
(mCompU (perturb B .fst (B .Perturb .snd ._·_ mb mb')) π2)
≡
mCompU
(PairFun (mCompU (perturb A .fst ma) π1)
(mCompU (perturb B .fst mb) π2))
(PairFun (mCompU (perturb A .fst ma') π1)
(mCompU (perturb B .fst mb') π2))
—————————————————————————————————————————
-}
--
-- Monotone functions on Posets with Perturbations
--
...
...
@@ -220,14 +247,11 @@ unquoteDecl FillersForIsoΣ = declareRecordIsoΣ FillersForIsoΣ (quote (Fillers
FillersFor-Set : ∀ {ℓ ℓ' ℓ'' ℓR : Level} {P1 P2 : PosetWithPtb ℓ ℓ' ℓ''} {R : MonRel (P1 .P) (P2 .P) ℓR}->
isSet (FillersFor P1 P2 R)
FillersFor-Set {P1 = P1} {P2 = P2} {R = R} =
isSetRetract (Iso.fun FillersForIsoΣ) (Iso.inv FillersForIsoΣ) (Iso.leftInv FillersForIsoΣ) (
isSet× (isSetΠ (λ δᴮ → isSetΣSndProp (isSetMonoid (P1 .Perturb)) λ δᴬ → isPropTwoCell (R .MonRel.is-prop-valued)))
(isSet× (isSetΠ (λ δᴸᴮ → isSetΣSndProp (isSet× (isSetMonoid nat-monoid) (isSetMonoid (P1 .Perturb)))
FillersFor-Set {P1 = P1} {P2 = P2} {R = R} =
isSetRetract (Iso.fun FillersForIsoΣ) (Iso.inv FillersForIsoΣ) (Iso.leftInv FillersForIsoΣ) (
isSet× (isSetΠ (λ δᴮ → isSetΣSndProp (isSetMonoid
(CommMonoid→Monoid
(P1 .Perturb))
)
λ δᴬ → isPropTwoCell (R .MonRel.is-prop-valued)))
(isSet× (isSetΠ (λ δᴸᴮ → isSetΣSndProp (isSet× (isSetMonoid
(CommMonoid→Monoid
nat-monoid)
)
(isSetMonoid
(CommMonoid→Monoid
(P1 .Perturb)))
)
λ δᴸᴬ → isPropTwoCell (LiftMonRel.ℝ (P1 .P) (P2 .P) R .MonRel.is-prop-valued)))
(isSet× (isSetΠ (λ δᴬ → isSetΣSndProp (isSetMonoid (P2 .Perturb)) (λ δᴮ → isPropTwoCell (R .MonRel.is-prop-valued))))
(isSetΠ (λ δᴸᴬ → isSetΣSndProp (isSet× (isSetMonoid nat-monoid) (isSetMonoid (P2 .Perturb)))
(isSet× (isSetΠ (λ δᴬ → isSetΣSndProp (isSetMonoid
(CommMonoid→Monoid
(P2 .Perturb))
)
(λ δᴮ → isPropTwoCell (R .MonRel.is-prop-valued))))
(isSetΠ (λ δᴸᴬ → isSetΣSndProp (isSet× (isSetMonoid
(CommMonoid→Monoid
nat-monoid)
)
(isSetMonoid
(CommMonoid→Monoid
(P2 .Perturb)))
)
(λ δᴸᴮ → isPropTwoCell (LiftMonRel.ℝ (P1 .P) (P2 .P) R .MonRel.is-prop-valued)))))))
-- isSetΣSndProp ? ?
-- isSet× (isSetΠ ( λ δᴸᴮ → isSetΣSndProp (isSetΣ (isSetMonoid {!!}) λ x → {!!}) λ δᴸᴬ → isPropTwoCell {! R .MonRel.is-prop-valued!}))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment