Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
"from azure.storage.blob import ContainerClient\n",
"import io\n",
"import time\n",
"from PIL import Image\n",
"import datetime"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"523\n"
]
}
],
"source": [
"file_path_color_left = \"data/00\\image_left/\"\n",
"file_path_color_right = \"data/00\\image_right/\"\n",
"\n",
"left_images = os.listdir(file_path_color_left)\n",
"right_images = os.listdir(file_path_color_right)\n",
"\n",
"print(len(left_images))\n",
"# plt.figure(figsize=(12,4))\n",
"# plt.imshow(cv2.imread(file_path_color_left + left_images[165],0)) \n",
"#turning it into greyscale because we don't really need color unless we're interested in matching moving objects/features. "
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"def pixel_coord_np(height,width):\n",
" \"\"\"\n",
" Pixel in homogenous coordinate\n",
" Returns:\n",
" Pixel coordinate: [3, width * height]\n",
" \"\"\"\n",
" x = np.linspace(0, width - 1, width).astype(np.float32)\n",
" y = np.linspace(0, height - 1, height).astype(np.float32)\n",
" [x, y] = np.meshgrid(x, y)\n",
" return np.vstack((x.flatten(), y.flatten(), np.ones_like(x.flatten())))\n",
"\n",
"\n",
"def intrinsic_from_fov(height, width, fov=90):\n",
" \"\"\"\n",
" Basic Pinhole Camera Model\n",
" intrinsic params from fov and sensor width and height in pixels\n",
" Returns:\n",
" K: [4, 4]\n",
" \"\"\"\n",
" px, py = (width / 2, height / 2)\n",
" hfov = fov / 360. * 2. * np.pi\n",
" fx = width / (2. * np.tan(hfov / 2.))\n",
"\n",
" vfov = 2. * np.arctan(np.tan(hfov / 2) * height / width)\n",
" fy = height / (2. * np.tan(vfov / 2.))\n",
"\n",
" return np.array([[fx, 0, px, 0.],\n",
" [0, fy, py, 0.],\n",
" [0, 0, 1., 0.],\n",
" [0., 0., 0., 1.]])\n",
"\n",
"def quaternion_rotation_matrix(Q):\n",
" \"\"\"\n",
" Covert a quaternion into a full projection matrix.\n",
" \n",
" Input\n",
" :param Q: A 7 element array representing translation and the quaternion (q0,q1,q2,q3) \n",
" \n",
" Output\n",
" :return: A 3x4 element matrix representing the full projection matrix. \n",
" This projection matrix converts a point in the local reference \n",
" frame to a point in the global reference frame.\n",
" \"\"\"\n",
" # Extract the values from Q\n",
" t0 = Q[0]\n",
" t1 = Q[1]\n",
" t2 = Q[2]\n",
" q0 = Q[3]\n",
" q1 = Q[4]\n",
" q2 = Q[5]\n",
" q3 = Q[6]\n",
" \n",
" # First row of the rotation matrix\n",
" r00 = 2 * (q0 * q0 + q1 * q1) - 1\n",
" r01 = 2 * (q1 * q2 - q0 * q3)\n",
" r02 = 2 * (q1 * q3 + q0 * q2)\n",
" \n",
" # Second row of the rotation matrix\n",
" r10 = 2 * (q1 * q2 + q0 * q3)\n",
" r11 = 2 * (q0 * q0 + q2 * q2) - 1\n",
" r12 = 2 * (q2 * q3 - q0 * q1)\n",
" \n",
" # Third row of the rotation matrix\n",
" r20 = 2 * (q1 * q3 - q0 * q2)\n",
" r21 = 2 * (q2 * q3 + q0 * q1)\n",
" r22 = 2 * (q0 * q0 + q3 * q3) - 1\n",
" \n",
" # 3x4 projection matrix\n",
" pro_matrix = np.array([[r00, r01, r02, t0],\n",
" [r10, r11, r12, t1],\n",
" [r20, r21, r22, t2]])\n",
" \n",
" return pro_matrix"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"523\n"
]
}
],
"source": [
"class Dataset_Handler():\n",
" def __init__(self, sequence, lidar=False, progress_bar=True, low_memory=True):\n",
" \n",
" \n",
" # This will tell our odometry function if handler contains lidar info\n",
" self.lidar = lidar\n",
" # This will tell odometry functin how to access data from this object\n",
" self.low_memory = low_memory\n",
" \n",
" # Set file paths and get ground truth poses\n",
" self.seq_dir = \"data\\{}/\".format(sequence)\n",
" self.poses_dir = \"data\\{}.csv\".format(sequence)\n",
" self.depth_dir = \"data\\{}/\".format(sequence)\n",
"\n",
" poses = pd.read_csv(self.poses_dir, header=None)\n",
" \n",
" # Get names of files to iterate through\n",
" self.left_image_files = os.listdir(self.seq_dir + 'image_left')\n",
" self.right_image_files = os.listdir(self.seq_dir + 'image_right')\n",
" self.left_depth_files = os.listdir(self.depth_dir + 'depth_left')\n",
" self.right_depth_files = os.listdir(self.depth_dir + 'depth_right')\n",
" \n",
" # self.velodyne_files = os.listdir(self.seq_dir + 'flow')\n",
" self.num_frames = len(self.left_image_files)\n",
" print(self.num_frames)\n",
" # self.lidar_path = self.seq_dir + 'flow/'\n",
" self.first_image_left = cv2.imread(self.seq_dir + 'image_left/' \n",
" + self.left_image_files[0])\n",
" height = 480\n",
" width = 640\n",
" K = intrinsic_from_fov(height,width)\n",
" self.P0 = np.array(K[:3,:4])\n",
" self.P1 = np.array(K[:3,:4])\n",
" \n",
" \n",
" # Get calibration details for scene\n",
" # calib = pd.read_csv(self.seq_dir + 'calib.txt', delimiter=' ', header=None, index_col=0)\n",
" # self.P0 = np.array(calib.loc['P0:']).reshape((3,4))\n",
" # self.P1 = np.array(calib.loc['P1:']).reshape((3,4))\n",
" # self.P2 = np.array(calib.loc['P2:']).reshape((3,4)) #RGB cams\n",
" # self.P3 = np.array(calib.loc['P3:']).reshape((3,4)) #RGB cams\n",
" # This is the transformation matrix for LIDAR\n",
" # self.Tr = np.array(calib.loc['Tr:']).reshape((3,4))\n",
" \n",
" # Get times and ground truth poses\n",
" self.times = np.array(pd.read_csv(self.seq_dir + 'times.txt', \n",
" delimiter=' ', \n",
" header=None))\n",
" self.gt = np.zeros((len(poses), 3, 4))\n",
" for i in range(len(poses)):\n",
" self.gt[i] = np.array(quaternion_rotation_matrix(poses.iloc[i])).reshape((3, 4))\n",
" \n",
" # Get images and lidar loaded\n",
" if self.low_memory:\n",
" # Will use generators to provide data sequentially to save RAM\n",
" # Use class method to set up generators\n",
" self.reset_frames()\n",
" # Store original frame to memory for testing functions\n",
" self.first_image_left = cv2.imread(self.seq_dir + 'image_left/' \n",
" + self.left_image_files[0])\n",
" self.first_image_right = cv2.imread(self.seq_dir + 'image_right/' \n",
" + self.right_image_files[0])\n",
" self.second_image_left = cv2.imread(self.seq_dir + 'image_left/' \n",
" + self.left_image_files[1])\n",
" self.first_depth_left = np.load(self.depth_dir + 'depth_left/'\n",
" + self.left_depth_files[0])\n",
" self.first_depth_right = np.load(self.depth_dir + 'depth_right/'\n",
" + self.right_depth_files[0])\n",
" self.second_depth_left = np.load(self.depth_dir + 'depth_left/'\n",
" + self.left_depth_files[1])\n",
" \n",
" if self.lidar:\n",
" self.first_pointcloud = np.fromfile(self.lidar_path + self.velodyne_files[0],\n",
" dtype=np.float32, \n",
" count=-1).reshape((-1, 4))\n",
" self.imheight = height\n",
" self.imwidth = width\n",
" \n",
" else:\n",
" # If RAM is not a concern (>32GB), pass low_memory=False\n",
" if progress_bar:\n",
" import progressbar\n",
" bar = progressbar.ProgressBar(max_value=self.num_frames)\n",
" self.images_left = []\n",
" self.images_right = []\n",
" self.depths_left = []\n",
" self.depths_right =[]\n",
" self.pointclouds = []\n",
" for i, name_left in enumerate(self.left_image_files):\n",
" name_right = self.right_image_files[i]\n",
" d_left = self.left_depth_files\n",
" d_right = self.right_depth_files\n",
" self.images_left.append(cv2.imread(self.seq_dir + 'image_left/' + name_left))\n",
" self.images_right.append(cv2.imread(self.seq_dir + 'image_right/' + name_right))\n",
" self.depths_left.append(np.load(self.depth_dir + 'depth_left/' + d_left))\n",
" self.depths_right.append(np.load(self.depth_dir + 'depth_right/' + d_right))\n",
" if self.lidar:\n",
" pointcloud = np.fromfile(self.lidar_path + self.velodyne_files[i], \n",
" dtype=np.float32, \n",
" count=-1).reshape([-1,4])\n",
" self.pointclouds.append(pointcloud)\n",
" if progress_bar:\n",
" bar.update(i+1)\n",
" \n",
" self.imheight = self.images_left[0].shape[0]\n",
" self.imwidth = self.images_left[0].shape[1]\n",
" # Keep consistent instance variable names as when using low_memory\n",
" self.first_image_left = self.images_left[0]\n",
" self.first_image_right = self.images_right[0]\n",
" self.second_image_left = self.images_left[1]\n",
" if self.lidar:\n",
" self.first_pointcloud = self.pointclouds[0]\n",
" \n",
" def reset_frames(self):\n",
" # Resets all generators to the first frame of the sequence\n",
" self.images_left = (cv2.imread(self.seq_dir + 'image_left/' + name_left)\n",
" for name_left in self.left_image_files)\n",
" self.images_right = (cv2.imread(self.seq_dir + 'image_right/' + name_right)\n",
" for name_right in self.right_image_files)\n",
" self.depths_left = (np.load(self.depth_dir+'depth_left/' + d_left)\n",
" for d_left in self.left_depth_files)\n",
" self.depths_right = (np.load(self.depth_dir+'depth_right/' + d_right)\n",
" for d_right in self.right_depth_files) \n",
" if self.lidar:\n",
" self.pointclouds = (np.fromfile(self.lidar_path + velodyne_file, \n",
" dtype=np.float32, \n",
" count=-1).reshape((-1, 4))\n",
" for velodyne_file in self.velodyne_files)\n",
" pass\n",
"handler = Dataset_Handler(\"00\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"def compute_left_disparity_map(left_image, right_image, matcher = 'bm', rgb = True, verbose = True):\n",
" '''\n",
" Takes a left and right pair of images to computes the disparity map for the left\n",
" image. \n",
" \n",
" Arguments:\n",
" img_left -- image from left camera\n",
" img_right -- image from right camera\n",
" \n",
" Optional Arguments:\n",
" matcher -- (str) can be 'bm' for StereoBM or 'sgbm' for StereoSGBM matching.\n",
" rgb -- (bool) set to True if passing RGB images as input. \n",
" verbose -- (bool) set to True to report matching type and time to compute\n",
" \n",
" Returns:\n",
" disp_left -- disparity map for the left camera image\n",
" \n",
" '''\n",
" sad_window = 6\n",
" num_disparities = sad_window * 16\n",
" block_size = 11\n",
" matcher_name = matcher\n",
"\n",
" if matcher_name == 'bm':\n",
" matcher = cv2.StereoBM_create(numDisparities=num_disparities,\n",
" blockSize=block_size)\n",
" \n",
" elif matcher_name == 'sgbm':\n",
" matcher = cv2.StereoSGBM_create(numDisparities=num_disparities,\n",
" blockSize=block_size,\n",
" P1 = 8*3*sad_window**2,\n",
" P2 = 32*3*sad_window**2,\n",
" mode = cv2.STEREO_SGBM_MODE_SGBM_3WAY)\n",
" if rgb:\n",
" left_image = cv2.cvtColor(left_image, cv2.COLOR_BGR2GRAY)\n",
" right_image = cv2.cvtColor(right_image, cv2.COLOR_BGR2GRAY)\n",
" \n",
" start = datetime.datetime.now()\n",
" disp_left = matcher.compute(left_image, right_image).astype(np.float32)/16\n",
" end = datetime.datetime.now()\n",
"\n",
" if verbose:\n",
" print(f'Time to compute disparity map using Stereo{matcher_name.upper()}:', end-start)\n",
" \n",
" return disp_left\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time to compute disparity map using StereoBM: 0:00:00.009997\n"
]
}
],
"source": [
"first_left = cv2.imread(file_path_color_left + left_images[167])\n",
"first_right = cv2.imread(file_path_color_right + right_images[167])\n",
"\n",
"disp = compute_left_disparity_map(left_image=first_left, right_image=first_right,\n",
" matcher = 'bm', verbose = True)\n",
"\n",
"plt.figure(figsize=(15,15))\n",
"plt.imshow(disp);"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"def decompose_projection_matrix(p):\n",
" '''\n",
" Shortcut to use cv2.decomposeProjectionMatrix(), which only returns k, r, t, and divides\n",
" t by the scale, then returns it as a vector with shape (3,) (non-homogeneous)\n",
" \n",
" Arguments:\n",
" p -- projection matrix to be decomposed\n",
" \n",
" Returns:\n",
" k, r, t -- intrinsic matrix, rotation matrix, and 3D translation vector\n",
" \n",
" '''\n",
" k, r, t, _, _, _, _ = cv2.decomposeProjectionMatrix(p)\n",
" t = (t / t[3])[:3]\n",
" \n",
" return k, r, t\n",
"def calc_depth_map(disp_left, k_left, t_left, t_right, rectified=True):\n",
" '''\n",
" Assuming we don't have access to the depth map...\n",
" \n",
" Calculate depth map using a disparity map, intrinsic camera matrix, and translation vectors\n",
" from camera extrinsic matrices (to calculate baseline). Note that default behavior is for\n",
" rectified projection matrix for right camera. If using a regular projection matrix, pass\n",
" rectified=False to avoid issues.\n",
"\n",
" \n",
" \n",
" Arguments:\n",
" disp_left -- disparity map of left camera\n",
" k_left -- intrinsic matrix for left camera\n",
" t_left -- translation vector for left camera\n",
" t_right -- translation vector for right camera\n",
" \n",
" Optional Arguments:\n",
" rectified -- (bool) set to False if t_right is not from rectified projection matrix\n",
" \n",
" Returns:\n",
" depth_map -- calculated depth map for left camera\n",
" \n",
" '''\n",
" # Get focal length of x axis for left camera\n",
" f = k_left[0][0]\n",
" \n",
" # Calculate baseline of stereo pair\n",
" if rectified:\n",
" b = t_right[0] - t_left[0] \n",
" else:\n",
" b = t_left[0] - t_right[0]\n",
" \n",
" # Avoid instability and division by zero\n",
" disp_left[disp_left == 0.0] = 0.1\n",
" disp_left[disp_left == -1.0] = 0.1\n",
" \n",
" # Make empty depth map then fill with depth\n",
" depth_map = np.ones(disp_left.shape)\n",
" depth_map = f * b / disp_left\n",
" \n",
" return depth_map"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[3.1132812, 3.1132812, 3.1152344, ..., 3.9003906, 3.9023438,\n",
" 3.9042969],\n",
" [3.1171875, 3.1191406, 3.1191406, ..., 3.9082031, 3.9101562,\n",
" 3.9121094],\n",
" [3.1230469, 3.1230469, 3.125 , ..., 3.9160156, 3.9179688,\n",
" 3.9199219],\n",
" ...,\n",
" [2.0664062, 2.0664062, 2.0683594, ..., 3.1738281, 3.2265625,\n",
" 3.2285156],\n",
" [2.0625 , 2.0644531, 2.0644531, ..., 3.1679688, 3.21875 ,\n",
" 3.2207031],\n",
" [2.0585938, 2.0605469, 2.0605469, ..., 3.2070312, 3.2089844,\n",
" 3.2128906]], dtype=float32)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"handler.first_depth_left"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"def pointcloud2image(pointcloud, imheight, imwidth, Tr, P0):\n",
" '''\n",
" ...\n",
" Takes a pointcloud of shape Nx4 and projects it onto an image plane, first transforming\n",
" the X, Y, Z coordinates of points to the camera frame with tranformation matrix Tr, then\n",
" projecting them using camera projection matrix P0.\n",
" \n",
" Arguments:\n",
" pointcloud -- array of shape Nx4 containing (X, Y, Z, reflectivity)\n",
" imheight -- height (in pixels) of image plane\n",
" imwidth -- width (in pixels) of image plane\n",
" Tr -- 3x4 transformation matrix between lidar (X, Y, Z, 1) homogeneous and camera (X, Y, Z)\n",
" P0 -- projection matrix of camera (should have identity transformation if Tr used)\n",
" \n",
" Returns:\n",
" render -- a (imheight x imwidth) array containing depth (Z) information from lidar scan\n",
" \n",
" '''\n",
"\n",
" pointcloud = pointcloud[pointcloud[:, 0] > 0]\n",
" \n",
"\n",
" pointcloud = np.hstack([pointcloud[:, :3], np.ones(pointcloud.shape[0]).reshape((-1,1))])\n",
" \n",
" # Transform pointcloud into camera coordinate frame\n",
" cam_xyz = Tr.dot(pointcloud.T)\n",
" \n",
" # Ignore any points behind the camera (probably redundant but just in case)\n",
" cam_xyz = cam_xyz[:, cam_xyz[2] > 0]\n",
" \n",
" # Extract the Z row which is the depth from camera\n",
" depth = cam_xyz[2].copy()\n",
" \n",
" # Project coordinates in camera frame to flat plane at Z=1 by dividing by Z\n",
" cam_xyz /= cam_xyz[2]\n",
" \n",
" # Add row of ones to make our 3D coordinates on plane homogeneous for dotting with P0\n",
" cam_xyz = np.vstack([cam_xyz, np.ones(cam_xyz.shape[1])])\n",
" \n",
" # Get pixel coordinates of X, Y, Z points in camera coordinate frame\n",
" projection = P0.dot(cam_xyz)\n",
" #projection = (projection / projection[2])\n",
" \n",
" # Turn pixels into integers for indexing\n",
" pixel_coordinates = np.round(projection.T, 0)[:, :2].astype('int')\n",
" #pixel_coordinates = np.array(pixel_coordinates)\n",
" \n",
" # Limit pixel coordinates considered to those that fit on the image plane\n",
" indices = np.where((pixel_coordinates[:, 0] < imwidth)\n",
" & (pixel_coordinates[:, 0] >= 0)\n",
" & (pixel_coordinates[:, 1] < imheight)\n",
" & (pixel_coordinates[:, 1] >= 0)\n",
" )\n",
" pixel_coordinates = pixel_coordinates[indices]\n",
" depth = depth[indices]\n",
" \n",
" # Establish empty render image, then fill with the depths of each point\n",
" render = np.zeros((imheight, imwidth))\n",
" for j, (u, v) in enumerate(pixel_coordinates):\n",
" if u >= imwidth or u < 0:\n",
" continue\n",
" if v >= imheight or v < 0:\n",
" continue\n",
" render[v, u] = depth[j]\n",
" # Fill zero values with large distance so they will be ignored. (Using same max value)\n",
"\n",
"\n",
" \n",
" return render"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"def stereo_2_depth(img_left, img_right, P0, P1, matcher='bm', rgb=True, verbose=False, \n",
" rectified=True):\n",
" '''\n",
" Takes stereo pair of images and returns a depth map for the left camera. If your projection\n",
" matrices are not rectified, set rectified=False.\n",
" \n",
" Arguments:\n",
" img_left -- image of left camera\n",
" img_right -- image of right camera\n",
" P0 -- Projection matrix for the left camera\n",
" P1 -- Projection matrix for the right camera\n",
" \n",
" Optional Arguments:\n",
" matcher -- (str) can be 'bm' for StereoBM or 'sgbm' for StereoSGBM\n",
" rgb -- (bool) set to True if images passed are RGB. Default is False\n",
" verbose -- (bool) set to True to report computation time and method\n",
" rectified -- (bool) set to False if P1 not rectified to P0. Default is True\n",
" \n",
" Returns:\n",
" depth -- depth map for left camera\n",
" \n",
" '''\n",
" # Compute disparity map\n",
" disp = compute_left_disparity_map(img_left, \n",
" img_right, \n",
" matcher=matcher, \n",
" rgb=rgb, \n",
" verbose=verbose)\n",
" # Decompose projection matrices\n",
" k_left, r_left, t_left = decompose_projection_matrix(P0)\n",
" k_right, r_right, t_right = decompose_projection_matrix(P1)\n",
" # Calculate depth map for left camera\n",
" depth = calc_depth_map(disp, k_left, t_left, t_right)\n",
" \n",
" return depth"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"def extract_features(image, detector='sift', mask=None):\n",
" \"\"\"\n",
" Find keypoints and descriptors for the image\n",
"\n",
" Arguments:\n",
" image -- a grayscale image\n",
"\n",
" Returns:\n",
" kp -- list of the extracted keypoints (features) in an image\n",
" des -- list of the keypoint descriptors in an image\n",
" \"\"\"\n",
" if detector == 'sift':\n",
" det = cv2.SIFT_create()\n",
" elif detector == 'orb':\n",
" det = cv2.ORB_create()\n",
" elif detector == 'surf':\n",
" det = cv2.xfeatures2d.SURF_create()\n",
" \n",
" kp, des = det.detectAndCompute(image, mask)\n",
" \n",
" return kp, des"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"def match_features(des1, des2, matching='BF', detector='sift', sort=True, k=2):\n",
" \"\"\"\n",
" Match features from two images\n",
"\n",
" Arguments:\n",
" des1 -- list of the keypoint descriptors in the first image\n",
" des2 -- list of the keypoint descriptors in the second image\n",
" matching -- (str) can be 'BF' for Brute Force or 'FLANN'\n",
" detector -- (str) can be 'sift or 'orb'. Default is 'sift'\n",
" sort -- (bool) whether to sort matches by distance. Default is True\n",
" k -- (int) number of neighbors to match to each feature.\n",
"\n",
" Returns:\n",
" matches -- list of matched features from two images. Each match[i] is k or less matches for \n",
" the same query descriptor\n",
" \"\"\"\n",
" if matching == 'BF':\n",
" if detector == 'sift':\n",
" matcher = cv2.BFMatcher_create(cv2.NORM_L2, crossCheck=False)\n",
" elif detector == 'orb':\n",
" matcher = cv2.BFMatcher_create(cv2.NORM_HAMMING2, crossCheck=False)\n",
" matches = matcher.knnMatch(des1, des2, k=k)\n",
" elif matching == 'FLANN':\n",
" FLANN_INDEX_KDTREE = 1\n",
" index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees=5)\n",
" search_params = dict(checks=50)\n",
" matcher = cv2.FlannBasedMatcher(index_params, search_params)\n",
" matches = matcher.knnMatch(des1, des2, k=k)\n",
" \n",
" if sort:\n",
" matches = sorted(matches, key = lambda x:x[0].distance)\n",
"\n",
" return matches"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"def visualize_matches(image1, kp1, image2, kp2, match):\n",
" \"\"\"\n",
" Visualize corresponding matches in two images\n",
"\n",
" Arguments:\n",
" image1 -- the first image in a matched image pair\n",
" kp1 -- list of the keypoints in the first image\n",
" image2 -- the second image in a matched image pair\n",
" kp2 -- list of the keypoints in the second image\n",
" match -- list of matched features from the pair of images\n",
"\n",
" Returns:\n",
" image_matches -- an image showing the corresponding matches on both image1 and image2 or None if you don't use this function\n",
" \"\"\"\n",
" image_matches = cv2.drawMatches(image1, kp1, image2, kp2, match, None, flags=2)\n",
" plt.figure(figsize=(16, 6), dpi=100)\n",
" plt.imshow(image_matches)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"def filter_matches_distance(matches, dist_threshold):\n",
" \"\"\"\n",
" Filter matched features from two images by distance between the best matches\n",
"\n",
" Arguments:\n",
" match -- list of matched features from two images\n",
" dist_threshold -- maximum allowed relative distance between the best matches, (0.0, 1.0) \n",
"\n",
" Returns:\n",
" filtered_match -- list of good matches, satisfying the distance threshold\n",
" \"\"\"\n",
" filtered_match = []\n",
" for m, n in matches:\n",
" if m.distance <= dist_threshold*n.distance:\n",
" filtered_match.append(m)\n",
"\n",
" return filtered_match"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"def estimate_motion(match, kp1, kp2, k, depth1=None, max_depth=3000):\n",
" \"\"\"\n",
" Estimate camera motion from a pair of subsequent image frames\n",
"\n",
" Arguments:\n",
" match -- list of matched features from the pair of images\n",
" kp1 -- list of the keypoints in the first image\n",
" kp2 -- list of the keypoints in the second image\n",
" k -- camera intrinsic calibration matrix \n",
" \n",
" Optional arguments:\n",
" depth1 -- Depth map of the first frame. Set to None to use Essential Matrix decomposition\n",
" max_depth -- Threshold of depth to ignore matched features. 3000 is default\n",
"\n",
" Returns:\n",
" rmat -- estimated 3x3 rotation matrix\n",
" tvec -- estimated 3x1 translation vector\n",
" image1_points -- matched feature pixel coordinates in the first image. \n",
" image1_points[i] = [u, v] -> pixel coordinates of i-th match\n",
" image2_points -- matched feature pixel coordinates in the second image. \n",
" image2_points[i] = [u, v] -> pixel coordinates of i-th match\n",
" \n",
" \"\"\"\n",
" rmat = np.eye(3)\n",
" tvec = np.zeros((3, 1))\n",
" \n",
" image1_points = np.float32([kp1[m.queryIdx].pt for m in match])\n",
" image2_points = np.float32([kp2[m.trainIdx].pt for m in match])\n",
"\n",
" \n",
" # if depth1 is not None:\n",
" cx = k[0, 2]\n",
" cy = k[1, 2]\n",
" fx = k[0, 0]\n",
" fy = k[1, 1]\n",
" object_points = np.zeros((0, 3))\n",
" delete = []\n",
" \n",
" # Extract depth information of query image at match points and build 3D positions\n",
" for i, (u, v) in enumerate(image1_points):\n",
" z = depth1[int(v), int(u)]\n",
" \n",
"\n",
" if z > max_depth:\n",
" delete.append(i)\n",
" continue\n",
" \n",
" # Use arithmetic to extract x and y (faster than using inverse of k)\n",
" x = z*(u-cx)/fx\n",
" y = z*(v-cy)/fy\n",
"\n",
" object_points = np.vstack([object_points, np.array([x, y, z])])\n",
"\n",
" # Equivalent math with dot product w/ inverse of k matrix, but SLOWER (see Appendix A)\n",
" #object_points = np.vstack([object_points, np.linalg.inv(k).dot(z*np.array([u, v, 1]))])\n",
"\n",
" image1_points = np.delete(image1_points, delete, 0)\n",
"\n",
" image2_points = np.delete(image2_points, delete, 0)\n",
"\n",
" \n",
" # Use PnP algorithm with RANSAC for robustness to outliers\n",
" \n",
" _,rvec, tvec, inliers = cv2.solvePnPRansac(object_points, image2_points, cameraMatrix=k, distCoeffs=None)\n",
"\n",
" rmat = cv2.Rodrigues(rvec)[0]\n",
"\n",
" \n",
" return rmat, tvec, image1_points, image2_points"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of matches before filtering: 47\n",
"Number of matches after filtering: 5\n"
]
}
],
"source": [
"image_left11 = handler.first_image_left\n",
"image_plus11 = handler.second_image_left\n",
"depth_left11 = np.load(handler.depth_dir + 'depth_left/'\n",
" + handler.left_depth_files[133])\n",
"image_right11 = handler.first_image_right\n",
"depth_plus11 = np.load(handler.depth_dir + 'depth_left/'\n",
" + handler.left_depth_files[1])\n",
"\n",
"kp0, des0 = extract_features(image_left11, 'sift')\n",
"kp1, des1 = extract_features(image_plus11, 'sift')\n",
"matches = match_features(des0, des1, matching='BF', detector='sift', sort=True)\n",
"print('Number of matches before filtering:', len(matches))\n",
"matches = filter_matches_distance(matches, 0.45)\n",
"print('Number of matches after filtering:', len(matches))\n",
"visualize_matches(image_left11, kp0, image_plus11, kp1, matches)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time to compute disparity map using StereoBM: 0:00:00.006027\n",
"Time to compute disparity map using StereoBM: 0:00:00.005975\n",
"Time to compute disparity map using StereoBM: 0:00:00.007059\n",
"Time to compute disparity map using StereoBM: 0:00:00.005005\n",
"Time to compute disparity map using StereoBM: 0:00:00.006033\n",
"Time to compute disparity map using StereoBM: 0:00:00.006032\n",
"Time to compute disparity map using StereoBM: 0:00:00.007002\n",
"Time to compute disparity map using StereoBM: 0:00:00.008971\n",
"Time to compute disparity map using StereoBM: 0:00:00.005008\n",
"Time to compute disparity map using StereoBM: 0:00:00.010032\n",
"Time to compute disparity map using StereoBM: 0:00:00.008002\n",
"Time to compute disparity map using StereoBM: 0:00:00.006968\n",
"Time to compute disparity map using StereoBM: 0:00:00.006027\n",
"Time to compute disparity map using StereoBM: 0:00:00.005998\n",
"Time to compute disparity map using StereoBM: 0:00:00.004999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006000\n",
"Time to compute disparity map using StereoBM: 0:00:00.009004\n",
"Time to compute disparity map using StereoBM: 0:00:00.004030\n",
"Time to compute disparity map using StereoBM: 0:00:00.005006\n",
"Time to compute disparity map using StereoBM: 0:00:00.007015\n",
"Time to compute disparity map using StereoBM: 0:00:00.006002\n",
"Time to compute disparity map using StereoBM: 0:00:00.007987\n",
"Time to compute disparity map using StereoBM: 0:00:00.007984\n",
"Time to compute disparity map using StereoBM: 0:00:00.006001\n",
"Time to compute disparity map using StereoBM: 0:00:00.005040\n",
"Time to compute disparity map using StereoBM: 0:00:00.009011\n",
"Time to compute disparity map using StereoBM: 0:00:00.004999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006990\n",
"Time to compute disparity map using StereoBM: 0:00:00.005026\n",
"Time to compute disparity map using StereoBM: 0:00:00.006000\n",
"Time to compute disparity map using StereoBM: 0:00:00.005007\n",
"Time to compute disparity map using StereoBM: 0:00:00.006002\n",
"Time to compute disparity map using StereoBM: 0:00:00.010000\n",
"Time to compute disparity map using StereoBM: 0:00:00.008001\n",
"Time to compute disparity map using StereoBM: 0:00:00.007071\n",
"Time to compute disparity map using StereoBM: 0:00:00.006003\n",
"Time to compute disparity map using StereoBM: 0:00:00.007002\n",
"Time to compute disparity map using StereoBM: 0:00:00.006000\n",
"Time to compute disparity map using StereoBM: 0:00:00.005973\n",
"Time to compute disparity map using StereoBM: 0:00:00.009014\n",
"Time to compute disparity map using StereoBM: 0:00:00.007000\n",
"Time to compute disparity map using StereoBM: 0:00:00.005959\n",
"Time to compute disparity map using StereoBM: 0:00:00.005027\n",
"Time to compute disparity map using StereoBM: 0:00:00.008971\n",
"Time to compute disparity map using StereoBM: 0:00:00.005963\n",
"Time to compute disparity map using StereoBM: 0:00:00.006999\n",
"Time to compute disparity map using StereoBM: 0:00:00.004992\n",
"Time to compute disparity map using StereoBM: 0:00:00.008035\n",
"Time to compute disparity map using StereoBM: 0:00:00.005034\n",
"Time to compute disparity map using StereoBM: 0:00:00.008070\n",
"Time to compute disparity map using StereoBM: 0:00:00.005965\n",
"Time to compute disparity map using StereoBM: 0:00:00.007045\n",
"Time to compute disparity map using StereoBM: 0:00:00.005029\n",
"Time to compute disparity map using StereoBM: 0:00:00.005024\n",
"Time to compute disparity map using StereoBM: 0:00:00.008015\n",
"Time to compute disparity map using StereoBM: 0:00:00.007006\n",
"Time to compute disparity map using StereoBM: 0:00:00.008035\n",
"Time to compute disparity map using StereoBM: 0:00:00.005035\n",
"Time to compute disparity map using StereoBM: 0:00:00.004987\n",
"Time to compute disparity map using StereoBM: 0:00:00.007000\n",
"Time to compute disparity map using StereoBM: 0:00:00.006003\n",
"Time to compute disparity map using StereoBM: 0:00:00.006999\n",
"Time to compute disparity map using StereoBM: 0:00:00.004999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006024\n",
"Time to compute disparity map using StereoBM: 0:00:00.005034\n",
"Time to compute disparity map using StereoBM: 0:00:00.007015\n",
"Time to compute disparity map using StereoBM: 0:00:00.005999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006997\n",
"Time to compute disparity map using StereoBM: 0:00:00.005005\n",
"Time to compute disparity map using StereoBM: 0:00:00.007992\n",
"Time to compute disparity map using StereoBM: 0:00:00.006002\n",
"Time to compute disparity map using StereoBM: 0:00:00.004994\n",
"Time to compute disparity map using StereoBM: 0:00:00.006998\n",
"Time to compute disparity map using StereoBM: 0:00:00.009008\n",
"Time to compute disparity map using StereoBM: 0:00:00.005032\n",
"Time to compute disparity map using StereoBM: 0:00:00.004998\n",
"Time to compute disparity map using StereoBM: 0:00:00.008012\n",
"Time to compute disparity map using StereoBM: 0:00:00.008000\n",
"Time to compute disparity map using StereoBM: 0:00:00.008001\n",
"Time to compute disparity map using StereoBM: 0:00:00.005029\n",
"Time to compute disparity map using StereoBM: 0:00:00.009059\n",
"Time to compute disparity map using StereoBM: 0:00:00.005999\n",
"Time to compute disparity map using StereoBM: 0:00:00.005999\n",
"Time to compute disparity map using StereoBM: 0:00:00.005002\n",
"Time to compute disparity map using StereoBM: 0:00:00.005032\n",
"Time to compute disparity map using StereoBM: 0:00:00.007999\n",
"Time to compute disparity map using StereoBM: 0:00:00.008033\n",
"Time to compute disparity map using StereoBM: 0:00:00.007001\n",
"Time to compute disparity map using StereoBM: 0:00:00.005010\n",
"Time to compute disparity map using StereoBM: 0:00:00.005015\n",
"Time to compute disparity map using StereoBM: 0:00:00.004998\n",
"Time to compute disparity map using StereoBM: 0:00:00.006998\n",
"Time to compute disparity map using StereoBM: 0:00:00.008027\n",
"Time to compute disparity map using StereoBM: 0:00:00.005032\n",
"Time to compute disparity map using StereoBM: 0:00:00.008001\n",
"Time to compute disparity map using StereoBM: 0:00:00.008007\n",
"Time to compute disparity map using StereoBM: 0:00:00.005975\n",
"Time to compute disparity map using StereoBM: 0:00:00.006999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006000\n",
"Time to compute disparity map using StereoBM: 0:00:00.007000\n",
"Time to compute disparity map using StereoBM: 0:00:00.007033\n",
"Time to compute disparity map using StereoBM: 0:00:00.006002\n",
"Time to compute disparity map using StereoBM: 0:00:00.005990\n",
"Time to compute disparity map using StereoBM: 0:00:00.009987\n",
"Time to compute disparity map using StereoBM: 0:00:00.007999\n",
"Time to compute disparity map using StereoBM: 0:00:00.005026\n",
"Time to compute disparity map using StereoBM: 0:00:00.006980\n",
"Time to compute disparity map using StereoBM: 0:00:00.008000\n",
"Time to compute disparity map using StereoBM: 0:00:00.006998\n",
"Time to compute disparity map using StereoBM: 0:00:00.005025\n",
"Time to compute disparity map using StereoBM: 0:00:00.005005\n",
"Time to compute disparity map using StereoBM: 0:00:00.008969\n",
"Time to compute disparity map using StereoBM: 0:00:00.005910\n",
"Time to compute disparity map using StereoBM: 0:00:00.006022\n",
"Time to compute disparity map using StereoBM: 0:00:00.007034\n",
"Time to compute disparity map using StereoBM: 0:00:00.007029\n",
"Time to compute disparity map using StereoBM: 0:00:00.004999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006002\n",
"Time to compute disparity map using StereoBM: 0:00:00.005030\n",
"Time to compute disparity map using StereoBM: 0:00:00.007997\n",
"Time to compute disparity map using StereoBM: 0:00:00.007996\n",
"Time to compute disparity map using StereoBM: 0:00:00.005998\n",
"Time to compute disparity map using StereoBM: 0:00:00.005034\n",
"Time to compute disparity map using StereoBM: 0:00:00.011007\n",
"Time to compute disparity map using StereoBM: 0:00:00.010080\n",
"Time to compute disparity map using StereoBM: 0:00:00.010015\n",
"Time to compute disparity map using StereoBM: 0:00:00.006014\n",
"Time to compute disparity map using StereoBM: 0:00:00.008999\n",
"Time to compute disparity map using StereoBM: 0:00:00.008984\n",
"Time to compute disparity map using StereoBM: 0:00:00.011999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006001\n",
"Time to compute disparity map using StereoBM: 0:00:00.008001\n",
"Time to compute disparity map using StereoBM: 0:00:00.006000\n",
"Time to compute disparity map using StereoBM: 0:00:00.006001\n",
"Time to compute disparity map using StereoBM: 0:00:00.009995\n",
"Time to compute disparity map using StereoBM: 0:00:00.004999\n",
"Time to compute disparity map using StereoBM: 0:00:00.010038\n",
"Time to compute disparity map using StereoBM: 0:00:00.009000\n",
"Time to compute disparity map using StereoBM: 0:00:00.008999\n",
"Time to compute disparity map using StereoBM: 0:00:00.010001\n",
"Time to compute disparity map using StereoBM: 0:00:00.009986\n",
"Time to compute disparity map using StereoBM: 0:00:00.009037\n",
"Time to compute disparity map using StereoBM: 0:00:00.004969\n",
"Time to compute disparity map using StereoBM: 0:00:00.010025\n",
"Time to compute disparity map using StereoBM: 0:00:00.010075\n",
"Time to compute disparity map using StereoBM: 0:00:00.009000\n",
"Time to compute disparity map using StereoBM: 0:00:00.009035\n",
"Time to compute disparity map using StereoBM: 0:00:00.007008\n",
"Time to compute disparity map using StereoBM: 0:00:00.008998\n",
"Time to compute disparity map using StereoBM: 0:00:00.011004\n",
"Time to compute disparity map using StereoBM: 0:00:00.009992\n",
"Time to compute disparity map using StereoBM: 0:00:00.011044\n",
"Time to compute disparity map using StereoBM: 0:00:00.010033\n",
"Time to compute disparity map using StereoBM: 0:00:00.005036\n",
"Time to compute disparity map using StereoBM: 0:00:00.006029\n",
"Time to compute disparity map using StereoBM: 0:00:00.009970\n",
"Time to compute disparity map using StereoBM: 0:00:00.005899\n",
"Time to compute disparity map using StereoBM: 0:00:00.010003\n",
"Time to compute disparity map using StereoBM: 0:00:00.005994\n",
"Time to compute disparity map using StereoBM: 0:00:00.010007\n",
"Time to compute disparity map using StereoBM: 0:00:00.004999\n",
"Time to compute disparity map using StereoBM: 0:00:00.006975\n",
"Time to compute disparity map using StereoBM: 0:00:00.005996\n",
"Time to compute disparity map using StereoBM: 0:00:00.008987\n",
"Time to compute disparity map using StereoBM: 0:00:00.009998\n",
"Time to compute disparity map using StereoBM: 0:00:00.005997\n",
"Time to compute disparity map using StereoBM: 0:00:00.011049\n",
"Time to compute disparity map using StereoBM: 0:00:00.009039\n",
"Time to compute disparity map using StereoBM: 0:00:00.010054\n",
"Time to compute disparity map using StereoBM: 0:00:00.011027\n",
"Time to compute disparity map using StereoBM: 0:00:00.007001\n",
"Time to compute disparity map using StereoBM: 0:00:00.009010\n",
"Time to compute disparity map using StereoBM: 0:00:00.005970\n",
"Time to compute disparity map using StereoBM: 0:00:00.009969\n",
"Time to compute disparity map using StereoBM: 0:00:00.011046\n",
"Time to compute disparity map using StereoBM: 0:00:00.010001\n",
"Time to compute disparity map using StereoBM: 0:00:00.010000\n",
"Time to compute disparity map using StereoBM: 0:00:00.009003\n",
"Time to compute disparity map using StereoBM: 0:00:00.011048\n",
"Time to compute disparity map using StereoBM: 0:00:00.010034\n",
"Time to compute disparity map using StereoBM: 0:00:00.010001\n",
"Time to compute disparity map using StereoBM: 0:00:00.008964\n",
"Time to compute disparity map using StereoBM: 0:00:00.007957\n",
"Time to compute disparity map using StereoBM: 0:00:00.009027\n",
"Time to compute disparity map using StereoBM: 0:00:00.011011\n",
"Time to compute disparity map using StereoBM: 0:00:00.007996\n",
"Time to compute disparity map using StereoBM: 0:00:00.005027\n",
"Time to compute disparity map using StereoBM: 0:00:00.010033\n",
"Time to compute disparity map using StereoBM: 0:00:00.010005\n",
"Time to compute disparity map using StereoBM: 0:00:00.008010\n",
"Time to compute disparity map using StereoBM: 0:00:00.009967\n",
"Time to compute disparity map using StereoBM: 0:00:00.009992\n",