Skip to content
Snippets Groups Projects
stepping.py 3.36 KiB
Newer Older
import numpy as np
import scipy.integrate as itg


def solve_discrete_difference_eqns(discrete_state_model, x0, u_fcn, DT, T):
    """

    :param discrete_state_model:
    :param x0: m, |
    :param u_fcn: (x_t, t) -> u_t \in n, |
    :param DT: sampling time
    :param T: final time, steps made for t < T
    :return:
        x: m, k | ith column is state at t = i*DT
        u: n, k | ith column is control at t
    """
    m, n = discrete_state_model.get_mn()
    t = np.arange(0, T, DT)
    x = np.zeros((m, t.size))
    u = np.zeros((n, t.size))
    x[:, 0] = x0.copy()
    for i in range(0, t.size-1):
        operators = discrete_state_model.get_process_operators(x[:, i])
        u[:, i] = u_fcn(x[:, i], i*DT, **operators)
        x[:, i+1] = discrete_state_model.step(x[:, i], u[:, i])
    return x, u
def solve_cts_eqns(cts_state_model, x0, u_fcn, DT, T, cts_sim_model=None):
    :param cts_state_model: model used for controller
    :param x0: m, |
    :param u_fcn: (x_t, t) -> u_t \in n, |
    :param DT: sampling time
    :param T: final time, steps made for t < T
    :param cts_sim_model: true physical model used to advance simulation
    :return:
        x: m, k | ith column is state at t = i*DT
        u: n, k | ith column is control at t
    """
    cts_sim_model = cts_sim_model if cts_sim_model else cts_state_model
    m, n = cts_state_model.get_mn()
    t = np.arange(0, T, DT)
    x = np.zeros((m, t.size))
    u = np.zeros((n, t.size))
    x[:, 0] = x0.copy()
    for i in range(0, t.size - 1):
        operators = cts_state_model.get_process_operators(x[:, i])
        u[:, i] = u_fcn(x[:, i], i * DT, **operators)
        t_span = (i*DT, (i+1 + 0.5)*DT)
        t_eval = (i+1)*DT,
        sol = itg.solve_ivp(
            lambda t, x: cts_sim_model.step(x, u[:, i]),
            t_span, x[:, i], t_eval=t_eval)
        x[:, [i + 1]] = sol.y
        x[:, i + 1] = cts_state_model.reset_state(x[:, i + 1])


def solve_eqns_euler(cts_state_model, x0, u_fcn, DT, T, cts_sim_model=None, dt_euler=None):
    """
    :param cts_state_model: model used for controller
    :param x0: m, |
    :param u_fcn: (x_t, t) -> u_t \in n, |
    :param DT: sampling time
    :param T: final time, steps made for t < T
    :param cts_sim_model: true physical model used to advance simulation
    :param dt_euler: sampling time used in Euler steps
    :return:
        x: m, k | ith column is state at t = i*DT
        u: n, k | ith column is control at t
    """
    cts_sim_model = cts_sim_model if cts_sim_model else cts_state_model
    m, n = cts_state_model.get_mn()
    t = np.arange(0, T, DT)
    x = np.zeros((m, t.size))
    u = np.zeros((n, t.size))
    x[:, 0] = x0.copy()
    dt_euler = dt_euler or DT / 10
    for i in range(0, t.size - 1):
        operators = cts_state_model.get_process_operators(x[:, i])
        u[:, i] = u_fcn(x[:, i], i * DT, **operators)
        t_span = np.arange(i*DT, (i+1)*DT + dt_euler, dt_euler)
        x[:, i + 1] = euler_step(
            lambda t, x: cts_sim_model.step(x, u[:, i]),
            t_span, x[:, i])[:, -1]
        x[:, i + 1] = cts_state_model.reset_state(x[:, i + 1])
    return x, u


def euler_step(fun, t_span, y0):
    y = np.zeros((y0.size, t_span.size))
    y[:, 0] = y0
    h = t_span[1:] - t_span[:-1]
    for i in range(h.size):
        y_dot = fun(t_span[i + 1], y[:, i])
        y[:, i + 1] = y[:, i] + h[i] * y_dot
    return y