Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
mdstcheckpoints
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
tkadambi
mdstcheckpoints
Commits
1d3ae221
Commit
1d3ae221
authored
4 years ago
by
tkadambi
Browse files
Options
Downloads
Patches
Plain Diff
workshop 3 correct version
parent
1f3b0e14
No related branches found
No related tags found
No related merge requests found
Changes
2
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Workshop3/checkpoint-3.ipynb
+0
-350
0 additions, 350 deletions
Workshop3/checkpoint-3.ipynb
Workshop3/checkpoint3.ipynb
+643
-0
643 additions, 0 deletions
Workshop3/checkpoint3.ipynb
with
643 additions
and
350 deletions
Workshop3/checkpoint-3.ipynb
deleted
100644 → 0
+
0
−
350
View file @
1f3b0e14
{
"cells": [
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from scipy import stats"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('HospitalAdmissionsData.csv')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['ID', 'AdmissionLengthDays', 'Death_1', 'Admission_Type',\n",
" 'Insurance_Type', 'EnglishLanguage_1', 'Religion_Type', 'Married_1',\n",
" 'Race', 'Dx'],\n",
" dtype='object')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"object 5\n",
"int64 4\n",
"float64 1\n",
"dtype: int64"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.dtypes.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['private', 'medicare', 'government', 'medicaid', 'self pay'],\n",
" dtype=object)"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[\"Insurance_Type\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>ID</th>\n",
" <th>AdmissionLengthDays</th>\n",
" <th>Death_1</th>\n",
" <th>EnglishLanguage_1</th>\n",
" <th>Married_1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>58863.000000</td>\n",
" <td>58863.000000</td>\n",
" <td>58863.000000</td>\n",
" <td>58863.000000</td>\n",
" <td>58863.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>29508.211984</td>\n",
" <td>10.138978</td>\n",
" <td>0.099417</td>\n",
" <td>0.571072</td>\n",
" <td>0.410665</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>17026.189024</td>\n",
" <td>12.465611</td>\n",
" <td>0.299224</td>\n",
" <td>0.494927</td>\n",
" <td>0.491959</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>1.000000</td>\n",
" <td>-0.945139</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>14762.500000</td>\n",
" <td>3.743056</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>29523.000000</td>\n",
" <td>6.465972</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>44254.500000</td>\n",
" <td>11.798264</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>58976.000000</td>\n",
" <td>294.660417</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" ID AdmissionLengthDays Death_1 EnglishLanguage_1 \\\n",
"count 58863.000000 58863.000000 58863.000000 58863.000000 \n",
"mean 29508.211984 10.138978 0.099417 0.571072 \n",
"std 17026.189024 12.465611 0.299224 0.494927 \n",
"min 1.000000 -0.945139 0.000000 0.000000 \n",
"25% 14762.500000 3.743056 0.000000 0.000000 \n",
"50% 29523.000000 6.465972 0.000000 1.000000 \n",
"75% 44254.500000 11.798264 0.000000 1.000000 \n",
"max 58976.000000 294.660417 1.000000 1.000000 \n",
"\n",
" Married_1 \n",
"count 58863.000000 \n",
"mean 0.410665 \n",
"std 0.491959 \n",
"min 0.000000 \n",
"25% 0.000000 \n",
"50% 0.000000 \n",
"75% 1.000000 \n",
"max 1.000000 "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 emergency\n",
"dtype: object\n",
"0 medicare\n",
"dtype: object\n",
"0 catholic\n",
"dtype: object\n",
"0 white\n",
"dtype: object\n",
"0 newborn\n",
"dtype: object\n"
]
}
],
"source": [
"print(df[\"Admission_Type\"].mode())\n",
"print(df[\"Insurance_Type\"].mode())\n",
"print(df[\"Religion_Type\"].mode())\n",
"print(df[\"Race\"].mode())\n",
"print(df[\"Dx\"].mode())"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAS2ElEQVR4nO3df4wcZ33H8fcX86ORD6VA6Ak5Ue00UVQrroCcSKNW6E4C4gApP8QfNvkDtxYWVVO1UirVFlVx/0CkVVMVmrTIkMhQoVyjtIX4hxQo6glViorjNnAJbkqgrnIOsgW0114UlRq+/eP2nJW7e9nbmb19dub9kizvzM7OPF+P/fFzzzwzG5mJJKn5XjbuBkiSNoeBL0ktYeBLUksY+JLUEga+JLXEy8fdgPVcddVVuX379qE///zzz7N169b6GjRGTaoFmlVPk2qBZtXTpFpgsHpOnz79/cx8fa/3igz8iLgduP26667j8ccfH3o/CwsLzM7O1taucWpSLdCseppUCzSrnibVAoPVExH/3u+9Iod0MvNYZh648sorx90USWqMIgNfklQ/A1+SWsLAl6SWMPAlqSUMfElqiSIDPyJuj4gjy8vL426KJDVGkYHvtExJql+RgS9Jql+Rd9rWbfvBE5den737XWNsiSSNjz18SWoJA1+SWsLAl6SWMPAlqSU29aJtRGwFvgZ8LDOPb+ax13gBV1JbVerhR8QDEXEhIp68bP3uiHg6Ip6JiINdb/0u8FCVY0qShlN1SOcosLt7RURsAe4DbgN2AnsjYmdEvA34FnC+4jElSUOIzKy2g4jtwPHMvLGzfAtwODNv7Swf6mw6BWxl9T+BF4D3ZeZPeuzvAHAAYHp6+qb5+fmh27ayssLU1BSL53o/omHXtsm5k3etlqZoUj1NqgWaVU+TaoHB6pmbmzudmTO93hvFGP424Nmu5SXg5sy8EyAi9gHf7xX2AJl5BDgCMDMzk1W+nmzt68D2dY3bdzt7x/D73mxt/Kq2SdGkWqBZ9TSpFqhezygCP3qsu/RjRGYefckddH2nrSSpHqOYlrkEXNO1fDXw3EZ24MPTJKl+owj8U8D1EbEjIl4J7AEe2cgOfDyyJNWv6rTMB4HHgBsiYiki9mfmReBO4FHgDPBQZj61kf1uVg9/+8ETl35JUtNVGsPPzL191p8ETlbZtySpXkU+WsEhHUmqX5GB70VbSapfkYFvD1+S6ldk4NfRw99+8ASL55a9ICtJHUUGviSpfkUGvkM6klS/IgPfi7aSVL9N/QKUkvnFKJKarsgeviSpfkUGvmP4klS/IgPfMXxJql+RgS9Jqp+BL0ktYeBLUksUOS1z3F9x6BRNSU1UZA/fi7aSVL8iA1+SVD8DX5JawsCXpJYw8CWpJQx8SWoJp2W+BKdoSmqKInv4TsuUpPoVGfiSpPoZ+JLUEga+JLVEkRdtS+UFXEmTzB6+JLWEgS9JLWHgS1JLbFrgR8TPR8SnI+LhiPj1zTquJGlVpYu2EfEA8G7gQmbe2LV+N/BJYAvw2cy8OzPPAB+JiJcBn6ly3BJ4AVfSpKnawz8K7O5eERFbgPuA24CdwN6I2Nl571eAfwC+WvG4kqQNisystoOI7cDxtR5+RNwCHM7MWzvLhwAy8xNdnzmRmT27xRFxADgAMD09fdP8/PxQ7Vo8t8z0FXD+haE+viG7to3+ERArKytMTU2N/DibpUn1NKkWaFY9TaoFBqtnbm7udGbO9HpvFPPwtwHPdi0vATdHxCzwfuBVwMl+H87MI8ARgJmZmZydnR2qEfsOnuCuXRe5Z3H0txqcvWN25MdYWFhg2D+LEjWpnibVAs2qp0m1QPV6RpGG0WNdZuYCsDDQDgp6WqYkNcUoZuksAdd0LV8NPLeRHfi0TEmq3yh6+KeA6yNiB3AO2AN8cCM7mLQevjN2JE2CSj38iHgQeAy4ISKWImJ/Zl4E7gQeBc4AD2XmUxvZrz18SapfpR5+Zu7ts/4k61yYfSmT1sOXpElQ5KMV7OFLUv18PHLNHM+XVKoie/gRcXtEHFleXh53UySpMYoMfId0JKl+RQa+JKl+RQa+QzqSVL8iA98hHUmqn7N0RsgZO5JKUmQPX5JUvyJ7+E2809bevqRxK7KH7xi+JNWvyMCXJNXPwJekljDwJakligx8b7ySpPoVOUsnM48Bx2ZmZj487raMQveMncs5g0fSqBTZw5ck1c/Al6SWMPAlqSUMfElqCQNfklqiyMB3WqYk1a/IwPdZOpJUvyLn4beZT9WUNCoGfsG6w//o7q1jbImkJihySEeSVD8DX5JawsCXpJYw8CfE4rllth88se6D1yRpPQa+JLXEpgV+RLw3Ij4TEV+KiHds1nElSasqTcuMiAeAdwMXMvPGrvW7gU8CW4DPZubdmflF4IsR8Rrgj4EvVzm2VjlvX9Kgqs7DPwrcC3x+bUVEbAHuA94OLAGnIuKRzPxWZ5Pf67yvITmOL2kYkZnVdhCxHTi+1sOPiFuAw5l5a2f5UGfTuzu/vpKZf7fO/g4ABwCmp6dvmp+fH6pdi+eWmb4Czr8w1MeLM0gtu7ZNzqMoVlZWmJqaGnczatGkWqBZ9TSpFhisnrm5udOZOdPrvVHcabsNeLZreQm4GfhN4G3AlRFxXWZ+uteHM/MIcARgZmYmZ2dnh2rEvoMnuGvXRe5ZbMbNxIPUcvaO2c1pTA0WFhYY9tyWpkm1QLPqaVItUL2eUaRh9FiXmfkp4FMD7SDiduD26667rtaGSVKbjWKWzhJwTdfy1cBzG9mBT8uUpPqNood/Crg+InYA54A9wAc3sgN7+MNxxo6k9VTq4UfEg8BjwA0RsRQR+zPzInAn8ChwBngoM5/ayH7t4UtS/Sr18DNzb5/1J4GTw+7XHn519vYlXa7IKSyZeQw4NjMz8+Fxt6UJDH9J4LN0JKk1igx8v8RckupXZOB70VaS6lfkGL5Gx/F8qb2K7OE7pCNJ9Suyh+8snc1hb19qlyIDX5vP8Jear8ghHUlS/Yrs4Xun7XjZ25eaqcgevtMyJal+RQa+JKl+RQ7pqHwO+0iTx8DXugx2qTmKHNLxxitJql+RPXxvvCpTd29f0uQpsocvSapfkT18TRbH+aXJYA9fklrCwJeklnBIR5vi8gu+d+26yL6DJxwCkjZRkYHvs3Qml+P5UrmKDHynZTaD0zilsjiGL0ktYeBLUksY+JLUEga+JLVEkRdt1U6XX+R1lo9ULwNfE8HpnlJ1mzakExHXRsT9EfHwZh1TkvSiSoEfEQ9ExIWIePKy9bsj4umIeCYiDgJk5nczc3+V40mShld1SOcocC/w+bUVEbEFuA94O7AEnIqIRzLzWxWPpQYa1c1ZDgFJ/19kZrUdRGwHjmfmjZ3lW4DDmXlrZ/kQQGZ+orP8cGZ+YJ39HQAOAExPT980Pz8/VLsWzy0zfQWcf2GojxenSbXAYPXs2nblpdeL55Z7ru9no9tXsbKywtTU1EiPsZmaVE+TaoHB6pmbmzudmTO93hvFRdttwLNdy0vAzRHxOuDjwJsi4tDafwCXy8wjwBGAmZmZnJ2dHaoR+w6e4K5dF7lnsRnXpZtUCwxWz9k7Zi+93tfdY+9a389Gt69iYWGBYf+elqhJ9TSpFqhezygSJHqsy8z8AfCRgXbgw9NEfcM9Du9Iq0YxS2cJuKZr+WrguY3sIDOPZeaBK68c7Y/iktQmo+jhnwKuj4gdwDlgD/DBjezAHr7W06/nb+9dWl/VaZkPAo8BN0TEUkTsz8yLwJ3Ao8AZ4KHMfGoj+7WHL0n1q9TDz8y9fdafBE5W2bc0ao7tq22KfHhaRNweEUeWl5dfemNJ0kCKDHyHdCSpfkUGvj18SapfkYFvD1+S6ldk4EuS6lfkvfrOw9cwqtyZ69x+tUGRPXyHdCSpfkUGviSpfga+JLWEY/hqlbrG+R3b1yQqsofvGL4k1a/IwJck1c/Al6SWMPAlqSW8aCttMi/+alyK7OF70VaS6ldk4EuS6mfgS1JLGPiS1BIGviS1RJGzdKRS9HsUQ/f6u3ZdZF9neaOzbgZ51IMzeVSXInv4fsWhJNWvyMB3WqYk1a/IwJck1c/Al6SWMPAlqSUMfElqCQNfklrCwJekljDwJaklNu1O24jYCvw58CNgITO/sFnHliRVDPyIeAB4N3AhM2/sWr8b+CSwBfhsZt4NvB94ODOPRcRfAQa+GmeQRyVU3Wf3oxY2+mUqg2y/eG6556Mi/OKW0dqMP9+qQzpHgd3dKyJiC3AfcBuwE9gbETuBq4FnO5v9uOJxJUkbFJlZbQcR24Hjaz38iLgFOJyZt3aWD3U2XQL+IzOPR8R8Zu7ps78DwAGA6enpm+bn54dq1+K5ZaavgPMvDPXx4jSpFmhWPZtdy65tLz5yZPHccs/1/Qyy/YUfLl+qp8qxSrCyssLU1NS4mzGQQf58B6lnbm7udGbO9HpvFGP423ixJw+rQX8z8Cng3oh4F3Cs34cz8whwBGBmZiZnZ2eHasS+gye4a9dF7llsxgNBm1QLNKueza7l7B2zl17v6x4G6FrfzyDb/9kXvnSpnirHKsHCwgLDZshmG+TPt2o9o/hbGj3WZWY+D/zqQDvwS8wlqXajmJa5BFzTtXw18NxGduDTMiWpfqMI/FPA9RGxIyJeCewBHtnIDnweviTVr1LgR8SDwGPADRGxFBH7M/MicCfwKHAGeCgzn9rIfu3hS1L9Ko3hZ+bePutPAieH3a9j+JJUvyIfrWAPX5LqV2TgS5LqV2Tge9FWkupXZOA7pCNJ9Ssy8CVJ9Ssy8B3SkaT6FRn4DulIUv2KDHxJUv0MfElqiSID3zF8SapfkYHvGL4k1a/IwJck1c/Al6SWMPAlqSWKDHwv2kpS/YoMfC/aSlL9igx8SVL9DHxJagkDX5JawsCXpJYw8CWpJYoMfKdlSlL9igx8p2VKUv2KDHxJUv0MfElqCQNfklrCwJekljDwJaklDHxJagkDX5JaYtMCPyKujYj7I+LhzTqmJOlFAwV+RDwQERci4snL1u+OiKcj4pmIOLjePjLzu5m5v0pjJUnDe/mA2x0F7gU+v7YiIrYA9wFvB5aAUxHxCLAF+MRln/+1zLxQubWSpKFFZg62YcR24Hhm3thZvgU4nJm3dpYPAWTm5WF/+X4ezswPrPP+AeBAZ/EG4OmBGtjbVcD3K3y+JE2qBZpVT5NqgWbV06RaYLB6fjYzX9/rjUF7+L1sA57tWl4Cbu63cUS8Dvg48KaIONTvP4bMPAIcqdCu7mM+npkzdexr3JpUCzSrnibVAs2qp0m1QPV6qgR+9FjX98eFzPwB8JEKx5MkVVBlls4ScE3X8tXAc9WaI0kalSqBfwq4PiJ2RMQrgT3AI/U0qza1DA0Vokm1QLPqaVIt0Kx6mlQLVKxnoIu2EfEgMMvqBYPzwMcy8/6IeCfwp6zOzHkgMz9epTGSpNEZeJaOJGmy+WgFSWqJRgb+Ru4ALlVEnI2IxYh4IiIe76x7bUR8JSK+3fn9NeNuZy+97sxer+0Rcahzrp6OiFvH0+r++tRzOCLOdc7PE53hzbX3iq0nIq6JiL+PiDMR8VRE/FZn/cSdn3VqmdRz81MR8fWI+Eannj/orK/v3GRmo36xej3hO8C1wCuBbwA7x92uIeo4C1x12bo/Ag52Xh8E/nDc7ezT9rcCbwaefKm2Azs75+hVwI7Oudsy7hoGqOcw8Ds9ti26HuANwJs7r18N/GunzRN3ftapZVLPTQBTndevAP4R+MU6z00Te/hvAZ7J1Wf3/AiYB94z5jbV5T3A5zqvPwe8d4xt6Sszvwb88LLV/dr+HmA+M/8nM/8NeIbVc1iMPvX0U3Q9mfm9zPynzuv/Bs6wehPlxJ2fdWrpp9haAHLVSmfxFZ1fSY3npomB3+sO4PX+EpQqgS9HxOnO4yYApjPze7D6lx34mbG1buP6tX2Sz9edEfHNzpDP2o/ZE1NP53Epb2K1JznR5+eyWmBCz01EbImIJ4ALwFcys9Zz08TA39AdwAX7pcx8M3Ab8BsR8dZxN2hEJvV8/QXwc8Abge8B93TWT0Q9ETEF/DXw25n5X+tt2mNdUfX0qGViz01m/jgz38jqjaxviYgb19l8w/U0MfAbcQdwZj7X+f0C8Les/qh2PiLeAND5fZKeQNqv7RN5vjLzfOcf50+Az/Dij9LF1xMRr2A1IL+QmX/TWT2R56dXLZN8btZk5n8CC8Buajw3TQz8SbgDeF0RsTUiXr32GngH8CSrdXyos9mHgC+Np4VD6df2R4A9EfGqiNgBXA98fQzt25C1f4Ad72P1/EDh9UREAPcDZzLzT7remrjz06+WCT43r4+In+68vgJ4G/Av1Hluxn1lekRXu9/J6hX77wAfHXd7hmj/taxeff8G8NRaDcDrgK8C3+78/tpxt7VP+x9k9Ufp/2W1F7J/vbYDH+2cq6eB28bd/gHr+UtgEfhm5x/eGyahHuCXWf2x/5vAE51f75zE87NOLZN6bn4B+OdOu58Efr+zvrZz4522ktQSTRzSkST1YOBLUksY+JLUEga+JLWEgS9JLWHgS1JLGPiS1BL/ByZzd1XXrY2hAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"df[\"AdmissionLengthDays\"].hist(ax=ax, bins=100, bottom=0.1)\n",
"ax.set_yscale('log')"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAILCAYAAACNaGTNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3SVVd7F8e+56T0kgUASWigBQkhCF8GuoCIqSLOMin2sWFBn1FHHLgKKvWOhCSgq6GDDAtITQuihhk4S0nvyvH8E53UEFSTJc8v+rMVSzI1341q57nvPOb9jLMtCRERE5NccdgcQERER56OCICIiIkdQQRAREZEjqCCIiIjIEVQQRERE5AgqCCIiInIEFQQRN2SMucwYs6ARnuc0Y8yuhn4eEWl8KggiLsoY098Ys9gYU2CMyTPGLDLG9AKwLOtDy7LOcYKM/zbGrDHGVBtjHrY7j4gcOxUEERdkjAkFPgcmAxFALPAIUGFnrqPIAsYB8+wOIiLHRwVBxDV1BLAsa5plWTWWZZVZlrXAsqwMAGPMVcaYn355sDHmHGPMxsOfNrxsjPneGHPtrx9rjBlvjDlkjNlmjDn3V997tTFmvTGmyBiz1Rhzw7GGtCxrimVZXwBF9fYnF5FGoYIg4po2ATXGmCnGmHONMU1+74HGmChgFnA/EAlsBPr95mF9Dv/zKOAZ4C1jjDn8tQPAYCAUuBqYaIzpXp9/GBFxPioIIi7IsqxCoD9gAW8AB40xnxpjoo/y8POAtZZlzbEsqxp4Adj3m8fssCzrDcuyaoApQAsg+vBzzbMsa4tV53tgATCgYf5kIuIsVBBEXJRlWesty7rKsqw4oCsQA0w6ykNjgOxffZ8F/Pbkwb5ffb308N8GAxz+hGLJ4Y2Q+dQVjqj6+5OIiDNSQRBxA5ZlbQDepa4o/NZeIO6X3xxeOog7yuOOYIzxA2YD44Foy7LCgfmA+cNvFBGXp4Ig4oKMMZ2MMXcZY+IO/74lMBpYcpSHzwOSjDEXGWO8gZuB5sf4VL6AH3AQqD68efGYj08aY3yMMf7UvdZ4G2P8jTFex/r9ImIfFQQR11RE3cbCpcaYEuqKQSZw128faFlWDjCcus2HuUAXYAXHcCTSsqwi4DZgJnAIuBT49DhyvgGUUVde/nn47684ju8XEZuYuuVIEfEUxhgHdXsQLrMs6zu784iIc9InCCIewBgz0BgTfnhPwT+o20NwtOUIERFABUHEU5wEbAFygAuAiyzLKrM3kog4My0xiIiIyBH0CYKIiIgcQQVBREREjuB9PA+Oioqy2rRp00BRREREpDGtXLkyx7Kspkf72nEVhDZt2rBixYr6SSUiIiK2Msbs+L2vaYlBREREjqCCICIiIkdQQRAREZEjHNcehIZQXlXDrkNlhAf6EB7gg7eXOouINKySimrySirx83YQ4OtFoK83Xg5dUCnya7YXhHV7Cxn68uL//j7E35vwQB9ahAWQ0jKc1JbhpLQKp0VYgI0pRcQV7TpUyrJteSzfnsf2nFL2F5VzoLCC4orqIx7r5+2gaYgfXVqE0iUm9L9/jQ0PoO6GbBHPclyTFHv27GnV9ymG3OIKfsrKIb+0ikOlleSXVpFfWsn23FLW7SmksqYWgOah/pzeqRkXpcTQq00EDrV9EfmNqppavt1wgP9k7mPptjx259dNkw7196ZDdAjRoX40C/EnOtSfiCAfKmssyiqrKa2soayyht35ZazbW8i2nBJ+eWmMbxrEeV1bcF5SCzq3CFFZELdijFlpWVbPo37N7oLwRyqqa1i/t4j0nYdYvuMQ3204QGllDbHhAQxJiWFoaiwdokMaLY+IOKesA8XMXJHNnFW7yCmuJCLIlz5tI+p+xUeSEB1yXG8qSiur2bCviIzsfL5av5+ft+RSa0GbyEAGd4vhbye1plmofwP+iUQah8sWhN8qrazmq3X7+ThtNz9uzqGm1uKszs24/cyOJMWF2ZZLRBqfZVn8uDmHyd9uZvn2Q3g7DGd2bsbIXi05pUPTet3PlFtcwYJ1+5m/Zi+LsnLwdjgY1iOOG06Jp01UUL09j0hjc5uC8GsHiyqYtmwnb/20jYKyKs7o1IzbzuxASstwu6OJSANbsT2PZ/+zkaXb8ogND+DKfq25ODWOpiF+Df7cO3JLeP2HrXy0chfVNbWcm9SC287oQEJzfZoprsctC8IvisqrmLJ4O2/+tI380irO6RLNw0MSiQnXpkYRd7NhXyHPfLmRbzccICrYj9vObM/IXi3x8/Zq9CwHisp5Z9F2Pvh5B6VVNVx5UhvGnt2BEH+fRs8i8le5dUH4RXFFNe/8tI2XFmbhZQx3nZPAlf3a6OiSiBuoqK7hxW+zeGXhFoL8vLnx1HZc2a81gb62H8TiUEklzy7YyLRlO4kK9uOf53XmwpQYbWYUl+ARBeEX2XmlPPBJJt9vOki3uDCeuDiJrrHanyDiqtJ2HmLcrAw2HyhmaPdYHhrchfBAX7tjHWF1dj4Pzs0kY1cBfdpG8OwlybSKDLQ7lsgf8qiCAHWblz7P2Msjn63jUGkld5zZgZtPb6+jkSIupLyqhglfbeLNH7cSHerPE0OTOD2hmd2x/lBNrcWM5dk8+cV6sODxoUkMSY6xO5bI7/K4gvCLgtIqHvo0k7npexjQIYpJI1OIDG74TUwicmKy80q56cOVZO4u5NI+rbj/3E4utbafnVfK7dPTWLUznxE943h4SKJTLIeI/JbHFgSo+zRh2rJsHv5sLRGBvky+NJVebSLsjiUiv+O7jQe4Y3o6tZbFxBEpnNUl2u5If0lVTS2Tvt7Eywu3EB8VxOTR3ekSE2p3LJH/8UcFwe0vPjDGcGmfVnz89374+zgY9foSXvt+C8dTjESk4dXWWjz/9WbGvLucmPAAPr+1v8uWAwAfLwf3DOzEh9f0oai8mqGvLOLLzL12xxI5Zm5fEH6RGBPGZ7f2Z2BiNE9+sYH7Zq+h6vAYZxGxV0lFNde9t4KJX2/i4pRY5tzUj9aR7jGAqF/7KObdNoDOLUK58YNVvKo3KOIiPKYgAIT4+/DSpd259Yz2zFiRzTVTVlBUXmV3LBGPllNcweg3lrBw00EevTCR50YkE+Db+HMNGlLTED+mXdeXwd1a8NThNyiV1XqDIs7NowoC1C053HVOAk8NTWJRVg4jXlvCvoJyu2OJeKQduSUMe2Uxm/YX8foVPfjbSW3cdn6Av48XL4xK/e8blCvfXkZBqd6giPPyuILwi1G9W/HWlT3ZmVvCxS8vYuO+IrsjiXiUNbsKGPbKYgrLqph6XV/O7Oy6+w2OlcNR9wZlwohkVu44xKg3lpBbXGF3LJGj8tiCAHBaQjNm3ngSNbUWo17/mXV7Cu2OJOIRFmXlMOr1n/Hz9mLWTf3o3qqJ3ZEa1dDucbx1VU+25RQz8vUlHCjUp5jifDy6IEDd5sWZN5yEv48Xl765hMzdBXZHEnFrP23OYcy7y2kZEcicv/ejXdNguyPZYkCHprx7dW/25pcx4rWf2Z1fZnckkf/h8QUBoE1UEDOuP4kgX28ufWMJGbvy7Y4k4pYWZeVwzZTltI0KYup1fYkO9bc7kq36xkfy/rV9yC2pZMSrP7Mjt8TuSCL/pYJwWKvIQKZf35ewQB8ue3Mp6dkqCSL1afFvykFEkPPdp2CH7q2aMO26vpRWVjPiNZUEcR4qCL/SMiKQ6defRESQL1e8uVSfJIjUk8VZOYyZspzWEUF8eG0flYPf6BobxvTrT6KyupbL3lyqk1XiFFQQfiM2POC/nyRc9c5ythwstjuSiEtbuSOPMVOW0yoikA+v66P7UH5HQvMQpozpTX5pFZe/tZS8kkq7I4mHU0E4ihZhAbx/TR8cBq54cyl7tHlI5C/ZtL+IMe+uoEVYAFOv60uUysEf6hYXzptX9iQ7r5Qr315GoQa5iY1UEH5H26gg3r26N0Xl1VyhNi9y3Hbnl/G3t5bh5+3gvTG9VQ6OUd/4SF65vDvr9xZy7bsrKKussTuSeCgVhD/QNTaMN6/sya5DZVz9zjKKK6rtjiTiEg6VVPK3t5ZSUlnNlDG9aRkRaHckl3JGp2gmjExh+Y48bpm6imrdGyM2UEH4E33iI3nx0u5k7inkpg9W6oInkT9RWlnN1e8uJ/tQGW/+rSedW+iK479iSHIMjw5J5JsNB3j083W64EkanQrCMTi7SzRPXpzEj5tzeGhupn5QRX5HTa3FrVPTyNiVz+TRqfSJj7Q7kku74qQ2XDegLe/9vIO3ftpmdxzxMN52B3AVI3q1ZHtuCS8v3EJ8VDDXnRJvdyQRp/P4vPV8s+EA/76oKwMTm9sdxy3cf25nsvPKeHz+euKaBDKoq/67SuPQJwjH4e5zEjg/qQVPfLGe/6zdZ3ccEacydelO3l60jatPbsMVfVvbHcdtOByGiSNTSI4L544ZaaTtPGR3JPEQKgjHweEwPDcimeS4cG6fnsaaXbq3QQTqRig/NDeT0xKa8sD5XeyO43YCfL1488qeNA3x49opK8jOK7U7kngAFYTj5O/jxRt/60lkkB/XTFmuGQni8bYcLOamD1YS3zSIyaNT8XIYuyO5pahgP965qjeVNbVc994KSit1qkoalgrCX9A0xI93ru5FaWUNN36wkvIqnVMWz5RfWsm1U1bg7eXgrSt7EeLvY3ckt9a+WTCTR6eycX8R93yUoQ3T0qBUEP6ijtEhTByZQsauAv75sU42iOepqbW4dVoauw+V8foVPTTroJGcltCMewd1Yt6avby8cIvdccSNqSCcgLO7RHP7mR2YvWoXUxZvtzuOSKN6bsFGftycwyMXJtKzTYTdcTzKDafEMyQ5hvELNvLthv12xxE3pYJwgm4/swNndY7m3/PWs2Rrrt1xRBrFl5l1715H927J6N6t7I7jcYwxPD2sG11ahHL7tHSyDuhSOal/KggnqO4IUjKtIwO5+cNV2rQobi/rQBF3zVxNcstwHh6SaHccjxXg68Xrf+uJr7eD699fQZEudpJ6poJQD0L8fXj9ip5UVNdq06K4taLyKq5/fyX+Pl68enl3/Ly97I7k0WLDA3jpsu5szynhvtlrtBdK6pUKQj1p3yyYCSOSydhVwGPz1tkdR6TeWZbF3R+tZkduKS9d1p0WYQF2RxLqbn+8Z2DdpsV3tRdK6pEKQj06J7E5N5wSzwdLdjI3fbfdcUTq1Zs/buM/a/dz/7md6Ks7FpzKDafEc1bnaB6ft56VOzRpUeqHCkI9u3tgAr3aNOH+OWvIOlBkdxyRerFyRx5Pf7mBQYnNuaZ/W7vjyG84HIbnhifTItyfW6auIre4wu5I4gZUEOqZj5eDyaO7E+DjxU0frNK0M3F5eSWV3DI1jZjwAJ4Z3g1jNCnRGYUF+vDKZT3ILankjhnp1NRqP4KcGBWEBtA8zJ/nR6WSdbCYBzRESVxYba3FnTPTyS2u5OXLuhOqSYlOrWtsGI8OSeTHzTlM/naz3XHExakgNJD+HaK4/cwOzEnbzfTl2XbHEflLXv1hCws3HuTBC7rQNTbM7jhyDEb2asnQ1Fhe+GazZrPICVFBaEC3ntGB/u2jePjTtWzar/0I4lqWbcvjuQWbGNytBZf30TAkV2GM4d8XdaVNZBC3T0/TfgT5y1QQGpCXwzBhZDIh/t7cMnWV5iOIyzhUUslt09JoFRHIk0OTtO/AxQT5eTP50lQOlVZx90erqdV+BPkLVBAaWLMQfyaMSGHT/mIe/VzzEcT5WZbFuNkZ5JVUMnl0qm5odFGJMWE8cH5nvtt4kLd+2mZ3HHFBKgiN4JSOTbnh1HimLt3J/DV77Y4j8ofeX7KDr9bt595zO2nfgYu7om9rBiZG8/SXG0jPzrc7jrgYFYRGcvc5CSS3DOfe2Rlk55XaHUfkqNbvLeSxees5o1Mzxpzcxu44coKMMTwzLJnoUH9unbaKQt3XIMdBBaGR+Hg5mDwqFSy4fXoaVTW1dkcS+R9llTXcOi2NsAAfnr1E8w7cRVigDy+MTmVPfjkPfpJpdxxxISoIjahVZCBPDE1i1c58XvhGZ5TFuTz6+Vq2HCxm0sgUIoP97I4j9ahH6ybcfmYH5qbv4eO0XXbHERehgtDILkiO4ZIecbz0XRbLtuXZHUcEgC/W7GXasmxuOrUdJ7ePsjuONICbT29P7zYRPPjJWnbmaplT/pwKgg0eHpJIy4hAxs5Ip6BMa4Jir70FZdw3Zw3JcWGMPbuj3XGkgXg5DBNHpWAM3KZlTjkGKgg2CPbz5vlRqewrLOefH+sOd7FPba3FnTNWU1VTy6RRqfh46SXBncWGB/Dk0CTSs7XMKX9OrwY2SWkZztizOvB5xl7mrNLV0GKPN37cys9bc3n4gkTaRgXZHUcaweBu/7/MuVSjmOUPqCDY6KbT6tYEH5qbyY7cErvjiIfJ3F3A+AUbObdrc4b3jLM7jjSih4ck0krLnPInVBBs9MuaoMNhuH16OtVaE5RGUlZZw23T04gM8tMoZQ8U7OfNxJEp7C+q4F9zdfRRjk4FwWax4QE8fnHdmuCL32XZHUc8xGPz1rEtp4QJI5IJD/S1O47YILVVE247owOfpO9hbrqWOeVIKghOYEhyDBelxDD52yzSdh6yO464uW/W7+fDpTu5bkA8/XSk0aPdfHo7urcK54FPMtmdX2Z3HHEyKghO4pELu9I81J+xM9Ipqai2O464qZziCu6dnUGn5iHcdY6ONHo6by8HE0emUFtrcdfMdGp066P8igqCkwgL8OG5EcnsyCvlsXm69VHqn2VZ3Dc7g8Lyap4flYqft5fdkcQJtI4M4l9DElmyNY83f9xqdxxxIioITqRvfCQ3nNKOacuy+WrdfrvjiJuZvjybr9cfYNzABBKah9gdR5zI8B5xDEpszvgFG1m7p8DuOOIkVBCczJ1nd6RLi1DunZ3BgaJyu+OIm9iWU8Kjn63j5PaRjDm5rd1xxMkYY3hyaBJNAn0ZOyOd8qoauyOJE1BBcDK+3g6eH5VCSUU1987K0JRFOWHVNbWMnZGOj5dh/PBkHA4daZQjNQny5dnhyWzaX8wzX260O444ARUEJ9QhOoT7zu3EdxsPMnXZTrvjiIt78bss0rPzeWJoEi3CAuyOI07s1I5NufKk1ry9aBs/bc6xO47YTAXBSV15UhsGdIjisc/Xs/Vgsd1xxEWl7TzE5G+zuDg1lsHdYuyOIy7gvnM7065pEHd/tJr80kq744iNVBCclMNhePaSZHy9HYyduVo3r8lxK62s5s6Zq2ke6s8jFybaHUdcRICvF5NGppJTXMGDc9faHUdspILgxJqH+fP4xV1ZnZ3PS5qyKMfpsXnr2Z5bwvjhyYT6+9gdR1xIUlwYd5zVgc9Wa8qiJ1NBcHKDu8VwcWqspizKcfl2w36mHp6WeFK7SLvjiAu68dR29GjdRFMWPZgKggt45MJEmof6c+fM1ZRWasqi/LHc4grGzVqjaYlyQry9HEwc8f9TFms1ZdHjqCC4gFD/uimL23NLeGzeervjiBOzLIv756yhsKyKSaNSNC1RTkiryED+dcHhKYs/acqip1FBcBF94yO5/pR4pi7dyTfrNWVRjm7mimwWrNvPuEEJdGoeancccQPDe8ZxTpdoxv9nE+v3FtodRxqRCoILufPsjnRuEcq4WRkcLKqwO444me05JTzy2Tr6tdO0RKk/xhieGtaNsEAf7piuKYueRAXBhfh5e/H8qBSKKqq5b7amLMr/q66p5Y4Z6Xg7DM+N0LREqV8RQb48c0k3Nu4vYvx/NGXRU6gguJiO0SHcf24nvtlwgGnLsu2OI05C0xKloZ2e0Iwr+rbmzZ+2sShLUxY9gQqCC/plyuK/P1+nKYvCqsPTEodqWqI0sH+c15n4pkHcNVNTFj2BCoILcjjqLt3x83Ewdka6pix6sJKKasbOSKd5qD8Pa1qiNLAAXy9eGJVKbkkF989Zo2VON6eC4KKiQ/158uIkVu8qYNLXm+yOIzZ59LN17MwrZcIITUuUxtE1Noy7zkngi8x9fLRyl91xpAGpILiwc5NaMLJnS15euIWlW3PtjiON7Is1e5mxIpsbT21Hn3hNS5TGc92AePrGR/DIp2vZnlNidxxpICoILu6hC7rQOiKQsTPSKSitsjuONJI9+WXcN2cNyXFh3Hm2piVK4/JyGCaMSMHLYbhDy5xuSwXBxQX5efP8qFQOFFXwj0+0JugJamot7pxZ96L8/KhUfLz0YyyNLyY8gCeGJpGenc/kbzbbHUcagF5Z3EByy3DGnt2ReRl7mb1KN6+5u9d+2MKSrXk8PCSRNlFBdscRDza4WwzDusfx4ndZLNuWZ3ccqWcqCG7ixlPb0bttBP+am6k1QTe2OjufCQs2cX5SC4b3iLM7jgiPXJhIy4hA7piepmVON6OC4Ca8HIaJI+vWBG+bnkZltdYE3U1JRTV3zEinWYgfT1ychDGalij2C/bz5oXDy5z3zdGEV3eiguBGYsMDeOaSbmTsKmD8Ao1DdTcPzV3LjtwSJoxMISxQRxrFeSS3DOeegXVHHzXh1X2oILiZQV1bcFmfVrz+w1YWbjxgdxypJ3NW7WL2ql3cekYH+upIozih6wbEM6BDFI9+vpbN+4vsjiP1QAXBDT04uAsJ0SHc/dFqDhSV2x1HTtDWg8U88EkmvdtGcOsZ7e2OI3JUjsMXhQX5enPrtDTd+ugGVBDckL+PF5MvTaW4opo7Z6ymtlZrgq6qorqGW6el4evt4PlRKXjrSKM4sWYh/owfkcyGfUU8MX+93XHkBOnVxk11jA7hXxck8lNWDq/9sNXuOPIXPfXFBtbuKWT8Jcm6pVFcwukJzbi2f1ve+3kH89fstTuOnAAVBDc2qldLzk9qwfgFG1mxXWeUXc1X6/bzzqLtXH1yG87qEm13HJFjNm5QJ1JahnPvrAx25OrYtatSQXBjxhieHJZEXJMAbpmaRm5xhd2R5BjtOlTKPbNW0zU2lPvO7WR3HJHj4uvt4MVLU3E4DDdPXaX9CC5KBcHNhfr78NKl3ckrreSOGenaj+ACKqpruHlqGjU1Fi+O7o6ft5fdkUSOW1yTQJ4bnkzm7kLtR3BRKggeoGtsGA9fkMiPm3N46bssu+PIn3hi3npWZ+fz7PBkjVIWl3ZWl2iuG1C3H2FehvYjuBoVBA8xundLLkqJYeLXm1i8JcfuOPI7Plu9hyk/7+Da/m0Z1LW53XFETti4QZ1IbRXOvbMzNAbexaggeAhjDI9fnETbqCBum5bOgULNR3A2WQeKuW92Bj1aN+Fe7TsQN+Hj5eDFS7vj7WW48YOVlFZW2x1JjpEKggcJ8vPmlct7UFJRzS1T03SHuxMprazm7x+uxN/Hi5cu7a4rnMWtxIYH8MKoVDbuL+L+ObqW3lXoVcjDdIwO4alhSSzbnsfj87RxyBlYlsX9c9aw+UAxz49KpXmYv92RROrdKR2bcvc5CcxN38M7i7bbHUeOgQqCB7owJZZr+7fl3cXbmbVyl91xPN6bP25jbvoe7jq7I/07RNkdR6TB3HRqO87uEs3j89ezdGuu3XHkT6ggeKj7zu1Ev3aR/OPjNazZVWB3HI/1w6aDPPnFes5Las7Np+ueBXFvv9zX0DoikJunprGvQHuhnJkKgofy9nIweXQqTYP9uOH9FRqiZIMduSXcOi2NDs1CePaSZIwxdkcSaXCh/j68dkUPSiuruenDlVRUa4iSs1JB8GCRwX68enkPckoqtWmxkZVUVHP9eysBeP1vPQjy87Y5kUjj6RAdwvjhyaTtzNemRSemguDhkuLCePLiJH7emsvDn67VD2ojqK21uPuj1Ww+UMTk0am0jtQwJPE85yW14I6zOjBn1W5dKOek9LZFGNYjjs0Hinn1+y3ENw3mmv5t7Y7k1iZ+vYkvMvfxj/M6cUrHpnbHEbHN7Wd2IOtAMU9/uYF2TYM5W5eSORV9giAAjBuYwMDEaB6bt45v1u+3O47b+mhFNpO/zWJkz5ZcNyDe7jgitjLGMH54MkmxYdw+PY31ewvtjiS/ooIgQN3u4okjU0iMCeXWaWms26Mf1Pq2OCuH++es4eT2kTx2cVdtShQB/H28eONvPQnx9+baKSs4WKQN085CBUH+K9DXm7eu7EWovw/XTlmuccz1KOtAETd+sJK2UUG8fFkPTUoU+ZXoUH/e/FsvcksquPa9FRrH7CT0KiX/IzrUnzev7Mmh0irGTFlOcYV+UE9UTnEFV7+7HF9vB29f1YuwAB+7I4k4naS4MF4YlcqaXfn8/cNVOlXlBFQQ5AhdY8N46bJU1u8t4ob3V+ic8gkoqajmmikrOFBYwZtX9qJlRKDdkUSc1jmJzXnsoiQWbjzIfbN1/NFuKghyVGd0iuaZYd1YlJXL2Bnp1NTqB/V4VVTXcP37K8jcXcDk0amktAy3O5KI07u0TyvuOKsDs1ft4tn/bLQ7jkfTMUf5XcN6xJFXUsnj89cTHpjJ4xdpY92xqq6p5fZp6SzKymX88GTOSWxudyQRl3H7mR3YX1jBywu30CzEj6tO1tFrO6ggyB+67pR4ckoqeO37rUQF+3Hn2R3tjuT0frmd8cu1+3hocBcu6RFndyQRl2KM4d8XJpJTXMEjn68jNMCHod31c9TYtMQgf+q+QZ0Y3iOOF77ZzOs/bLE7jlOzLIvH563no5W7uO3MDozR0CmRv+SX+2L6to3k7o9WMzd9t92RPI4KgvwpYwxPDk3i/KQWPDF/A699r5JwNJZlMeGrTbz50zau6teGsWd1sDuSiEvz9/Hirat60rNNBGNnpDMvY6/dkTyKlhjkmHh7OXh+VAoYePKLDVjAjae2szuW07Asi6e+2MBrP2xlVK+WPDS4i/ZriNSDQF9v3rmqF1e+vYzbpqfh5YBBXVvYHcsj6BMEOWbeXg6eH5nCBckxPPXFBl5ZqE8SoK4cPPr5Ol77YStX9G3NExcn4XCoHIjUlyA/b94d05vkuDBumZrGgrX77I7kEVQQ5Lh4ezmYOCKZIckxPP3lBl76LsvuSLaqrbV44JNM3lm0nWv6t+XRCxNVDkQaQPDhkpAYG8bfP1zFnFW77I7k9lQQ5E/F7+oAACAASURBVLh5ezmYMCKZi1JiePY/G3n0s3XUeuCchOqaWu6dncGHS3dy02nteOD8zlpWEGlAof4+fHBNb3q3jeDOmat5Q9dENyjtQZC/pK4kpNAkyJe3F21jf2E5z41Ixt/Hy+5ojaKovIpbpqbx/aaD3HFWB24/s4PKgUgjCPH34Z2re3HnjNU8Pn89B4sruG9QJ31y1wBUEOQvczgM/7ogkdjwAB6bV/eD+sYVPQkLdO+7BvbklzHm3eVsPlDMU0OTGNW7ld2RRDyKn7cXL4xOJTLYl9d/2EpOcQVPD+umS9Dqmf5rygm7dkA8k0enkr4zn2GvLmbXoVK7IzWYzN0FXPzyInYfKuPdq3upHIjYxMtheGRIIned3ZE5q3ZzxVtLySnWVdH1SQVB6sUFyTFMGdOb/YXlXDD5J77fdNDuSPVuwdp9jHjtZ7yMYdZN/RjQoandkUQ8mjGGW8/swIQRyaTtzGfI5J9YnZ1vd6x6Z9eFeSoIUm9OahfJp7f0JzrUn6veWcaErza5xSVPldW1PPrZOq5/fyXtmwXzyc0nk9A8xO5YInLY0O5xzL6pH8YYhr/2MzOXZ9sdqV4UV1Rz18zVXP/eSls2gqsgSL1qGxXEx38/mWHd60YzX/XOMnJd+GO/HbklXPLqYt5eVDcd8aMbT6JZqL/dsUTkN7rGhvHZrf3p1aYJ42Zn8I+P11BW6bpX1adn53P+Cz/ycdoukuPCsOOtljme+7Z79uxprVixogHjiDuZsXwnD85dS0SgL08NS+K0hGZ2Rzou8zL2ct/sDIyBZ4cnM1A3Moo4veqaWp79z0Ze+2ErbaOCGD+8Gz1aR9gd65jV1Fq8+v0WJn61iehQfyaOTKF324bLb4xZaVlWz6N+TQVBGlLm7gLumJFO1oFiLkqJ4aELEokI8rU71h/aV1DOo5+vZf6afaS0DGfy6FRaRgTaHUtEjsOirBzGzcpgT0EZ15zclrsHJjj9MeztOSXcNyeDJVvzOL9bC564OImwgIY9FaaCILaqqK7h5e+28PLCLEL8fXhocBcuTIlxurkB1TW1TPl5BxMWbKS61uLWM9pzw6ntdHRKxEUVV1TzxPz1TF26k/ioIJ4cmkSf+Ei7Yx2htLKal77L4o0ftuHjZXh4SCKX9IhrlNdIFQRxChv3FXHv7AzSs/Pp1y6Suwcm0L1VE7tjAbByRx4PfrKWdXsLOS2hKY8O6UqrSH1qIOIOftqcw72zM9idX8ZZnZtxz8BOTrHR2LIsPsvYyxPz1rOvsJyhqbHcd26nRt3npIIgTqOm1uKDJTt4/pvN5JVUcnpCU8ae3ZFuceGNnsWyLH7emstL32WxKCuX6FA/Hr4gkUFdmzvdpxsicmLKKmt4e9E2Xv1+C8UV1QzrHsfYszsSGx7Q6Flqay2+23iAVxZuYcWOQyTGhPLIkER6tmn8vRIqCOJ0SiqqmfLzdl7/YSv5pVWc1TmaMf3b0LdtZIOPTLUsi4UbDzL5282s2plP0xA/rh8Qz6V9WhHkp+GiIu7sUEklr3y/hXcXbwcLBndrwaV9WtGjdZMGf2NQXlXDJ2m7eePHrWw5WEJMmD83n9GeUb1a4WXTqGgVBHFaReVVvLNoO2/+uJXC8mpiwwMY1j2Wod3jaBMVVG/PY1kWa/cU8tnqPXyesZfd+WXEhgdw46nxDO/Z0uk3L4lI/dqdX8arC7fwcdpuiiuq6RgdzOjerbg4NZbwwPrbSF1Ta7Fq5yEWrN3Hx2l7yCmuIDEmlOtPiee8pBa273FSQRCnV1ZZw4J1+5i1chc/ZeVgWZDcMpy+bSPo0boJPVo3ITLY75j/fZZlsb+wgjW7C1i18xBfZu5jW04J3g7DgA5RXJgSy/nd7P/hFBF7lVZW89nqPUxdls3q7HwcBrrFhdOvXST92kXRs02T43oDYVkW+wrLydxdyLcb9vPVuv3kFFfi6+XglI5RjDm5LSe1i3SaZUwVBHEp+wrK+ThtN1+t20fm7kIqa2oBiI8Kol2zYKKCfYkM8iMy2JfwQB9KK2soLq+mqLya4opqsvNKydhdwMGiugFNDlM35XFwtxgGJTaniZMfsxQRe6zdU8B/MvexaEsuq7Pzqa618PVy0CYqkJjwgLpfYf40DfGjprbuhFZldS2V1bXsKyxn0/4iNu4rorC8GoBgP29OS2jKwMTmnJbQlBB/57vITgVBXFZ5VQ1rdhewYvshVu44xK5DpeSWVJJXUnnEGGeHqfuBjA71JykujG6xYSTFhdGlRRgBvlpCEJFjV1xRzfJteSzZmsu2nBL2FJSxJ7+cvJLKoz4+1N+bTs1D6dg8mIToEDpGh5DSKhw/b+d+7VFBELdTW2uRX1ZFfmklAb5ehPj7EOTr5TQf24mIeyqrrCGnuAIfLwe+3g78vOv+6u0wLvn680cFQVu2xSU5HIaIIF+nn8ooIu4lwNfLYyaraoeWiIiIHEEFQURERI6ggiAiIiJHUEEQERGRIxzXKQZjzEFgR8PFERERkUbU2rKspkf7wnEVBBEREfEMWmIQERGRI6ggiIiIyBFUEEREROQIKggiIiJyBBUEEREROYIKgoiIiBxBBUFERESOoIIgIiIiR1BBEBERkSOoIIiIiMgRVBBERETkCCoIIm7IGHOZMWZBIzzPacaYXQ39PCLS+FQQRFyUMaa/MWaxMabAGJNnjFlkjOkFYFnWh5ZlnWNzvmbGmGnGmD2HMy4yxvSxM5OIHDsVBBEXZIwJBT4HJgMRQCzwCFBhZ67fCAaWAz2oyzgFmGeMCbY1lYgcExUEEdfUEcCyrGmWZdVYllVmWdYCy7IyAIwxVxljfvrlwcaYc4wxGw+/k3/ZGPO9MebaXz/WGDPeGHPIGLPNGHPur773amPMemNMkTFmqzHmhmMJaFnWVsuyJliWtfdwxtcBXyChPv9DiEjDUEEQcU2bgBpjzBRjzLnGmCa/90BjTBQwC7gfiAQ2Av1+87A+h/95FPAM8JYxxhz+2gFgMBAKXA1MNMZ0P97AxpgU6gpC1vF+r4g0PhUEERdkWVYh0B+wgDeAg8aYT40x0Ud5+HnAWsuy5liWVQ28AOz7zWN2WJb1hmVZNdQtBbQAog8/1zzLsrZYdb4HFgADjifv4SWR94FHLMsqOJ7vFRF7qCCIuCjLstZblnWVZVlxQFcgBph0lIfGANm/+j4L+O3Jg32/+nrp4b8NBjj8CcWSwxsh86krHFHHmtMYEwB8BiyxLOvJY/0+EbGXCoKIG7AsawPwLnVF4bf2AnG//Obw0kHcUR53BGOMHzAbGA9EW5YVDswHzB9+4/9+/yfAbuCY9i6IiHNQQRBxQcaYTsaYu4wxcYd/3xIYDSw5ysPnAUnGmIuMMd7AzUDzY3wqX8APOAhUH968eEzHJ40xPtTtfSgD/mZZVu0xPqeIOAEVBBHXVETdxsKlxpgS6opBJnDXbx9oWVYOMJy6zYe5QBdgBcdwJNKyrCLgNmAmcAi4FPj0GDP2o25z4zlAvjGm+PCv49q/ICL2MHXLkSLiKYwxDur2IFxmWdZ3ducREeekTxBEPIAxZqAxJvzwnoB/ULeH4GjLESIigAqCiKc4CdgC5AAXABdZllVmbyQRcWZaYhAREZEj6BMEEREROYIKgoiIiBzB+3geHBUVZbVp06aBooiIiEhjWrlyZY5lWU2P9rXjKght2rRhxYoV9ZNKREREbGWM2fF7X9MSg4iIiBxBBUFERESOoIIgIiIiRziuPQgiIqWV1ezJL2dPfhl78svIK63E18uBr7cDXy8Hfj4OmoX40zE6hKhgX+oujxQRV6OCICK/y7IssvPKWLQlh8VbclmyNZeDRX96x9N/RQT50jE6mE7NQzm1Y1P6tY/Ez9urAROLSH1RQRCRI2zeX8TUZTtZsHY/u/PrJjI3C/Hj5HaRdGweQkxYADHhAcSE+xMZ5Ed1bS2V1bVUHP61J7+MjfuK2LS/iI37i5ixPJt3F28nyNeL0zo1Y2Bic05PaEqIv4/Nf1IR+T0qCCICQHlVDfPX7GXasp0s334IHy/DaQnNuOHUePq1i6Jd06A/WC74308F2kYFcXL7qP/+vqK6hsVbclmwdh9frdvPvIy9BPp6MbJXS8ac3JaWEYEN+CcTkb/iuO5i6Nmzp6U5CCLupayyhncWb+P1H7aSX1pF26ggRvduybDucUQG+9X789XUWqTtPMTUZTv5NH0PtZbFeUktuP6UeLrFhdf784nI7zPGrLQsq+dRv6aCIOKZqmtq+WjlLiZ9vYn9hRWc0akZ1w5oy0nxkY22sXBvQRnvLtrO1KU7Kaqo5qzOzXhwcBdaRwY1yvOLeDoVBBH5H1+t28+TX6xn68ESurcK575zO9O7bYRteQrLq3j/5x28/F0WVbUW1w+I5++ntyPQV6ugIg1JBUFEAMgrqeShuZl8nrGX9s2CGTcwgbO7RDvNUcT9heU89cUGPk7bTYswf/55fmfOT2rhNPlE3I0KgojwZeZeHvgkk4KyKm47owM3ntYOHy/nnJW2YnseD81dy7q9hQzu1oLHL04iLEAnHkTq2x8VBH1+J+Lm8ksreXDuWj5bvYfEmFDev6YPnVuE2h3rD/VsE8Fnt/bn1e+3MOGrTaTtzGfSqBR6tbFvGUTE0zjn2wcRqRdr9xQwePJPfJm5lzvP7sgnN5/s9OXgF14Ow82nt2fWjSfh5TCMfO1nJn61ieqaWrujiXgEFQQRN/VJ2m6GvbKY6hqLmTecxG1ndnDaJYU/ktqqCfNvH8DFqXE8/81mLntzKXkllXbHEnF7rvdqISJ/qKqmlkc+W8sdM9LpFhfOZ7f2J7VVE7tjnZBgP2+eG5HMxJHJpGXnc9FLi9i8v8juWCJuTQVBxI3kl1Zy+ZtLeWfRdsac3JYPr+1D05D6H3Zkl4tT45hxfV9KK2sY+vJivt900O5IIm5LBUHETewtKGP4qz+TtjOfiSOTeeiCLi65pPBnUls1Ye4tJxMXEcjV7yxjyuLtdkcScUvu9+oh4oGyDhQx7OXF7CsoZ8qY3lycGmd3pAYVGx7ArBtP4oxO0fzr07U8OX89x3NkW0T+nAqCiItL23mIS179mcoai+k39OWkdpF2R2oUQX7evHZFD67o25rXftjKg3Mzqa1VSRCpL5qDIOLCFm48wE0frKJZqB/vjentcXcYeDkMj16YSJCfN69+v4XSihqeuaQb3m64tCLS2FQQRFzU95sOcv17K2nfLJgpY3q71WbE42GM4d5BCQT5evHcV5soq6rh+VGp+HqrJIicCP0EibignzbncN17K+gQHczU69zrpMJfYYzh1jM78MD5nfkicx/Xv7+Ciuoau2OJuDQVBBEXszgrh2umLCc+KogPrulDeKCv3ZGcxrUD4nni4iQWbjzIbdPSNHVR5ASoIIi4kCVbc7lmygpaRwby4bV9aBKkcvBbl/ZpxUODu/CftfsZNytDGxdF/iLtQRBxEat2HmLMu8uJbRLAh9f2JTLYs5cV/siY/m0pqajmua82Eejnxb8v7Koro0WOkwqCiAvIOlDMmHeX0zTET3sOjtEtZ7SnuLKa177fSpCfN/cN6qSSIHIcVBBEnNz+wnKufHsZ3g7De2N60yzE3+5ILsEYw32DOlFSUVcSwgJ8+Ptp7e2OJeIyVBBEnFhBWRVXvr2M/NJKZtxwksfNOThRxhgeHdKVwrJqnvlyI7HhAVyYEmt3LBGXoIIg4qTKq2q4/r0VbDlYzNtX9aJrbJjdkVySw2F4dng39heWc89HGUSH+tM33jOmTYqcCJ1iEHFCtbUWd81czdJteYwfnsyADk3tjuTS/Ly9eP2KnrSMCOD691aQdUBXRYv8GRUEESc04atNzFuzl3+e11kfideTsEAf3r26N77eXlz59nIOFJXbHUnEqakgiDiZuem7efG7LEb1asm1A9raHcettIwI5O2repJXUsk1766gtLLa7kgiTsv2glBeVcPzX2+mvEpjUUVW7TzEPbMy6NM2gkd1dr9BdIsLZ/LoVDL3FHDPrAxdEy3yO2wvCKt2HGLi15u4f84a/aCKR9udX8b1762keag/r17eQ5cNNaCzukQzbmAn5mXs5eWFW+yOI+KUbH8F6tc+ijvP7sjHabt5e9F2u+OI2KKkopprp6ygoqqGt67sqRHKjeDGU+MZkhzD+AUb+XrdfrvjiDgd2wsCwC2nt2dgYjRPzF/Poqwcu+OINCrLsrhn1mo27itk8qWpdIgOsTuSRzDG8PSwbiTGhHLHjHSdbBD5DacoCA6H4bkRKcRHBXHL1FVk55XaHUmk0bz+w1bmr9nHvYM6cVpCM7vjeJQA37rjj/4+Dq57byUFpVV2RxJxGk5REACC/bx5/W89qa61uP79ldpdLB5hUVYOT3+5gfOTWnD9KfF2x/FIMeEBvHp5D3YdKuW26WnU6PZHEcCJCgJA26ggXhidyoZ9hYzT7mJxc7vzy7h1Whrtmgbz9CXddGLBRj3bRPDwkES+33SQyd9utjuOiFNwqoIAcHpCM+4+J4HPM/YyZfF2u+OINIjyqhpu+mAlldW1vHpFD4L9NPXcbpf2bsXQ7rE8/81mFm48YHccEds5XUEAuOnUdpzZqRmPz19P2s5DdscRqXcPf7qWjF0FPDcimXZNg+2OI9RtWnz8oiQSokO4Y0Y6uw5pL5R4NqcsCHWbFpOJDvXn5g9Xcaik0u5IIvXmoxXZTF+ezc2nt2NgYnO748ivBPh68crlPaipsbj5w1VUVGuAm3gupywIAOGBvrx8WXdyiisZOzOdWm0cEjewaX8RD87N5KT4SO48O8HuOHIUbaOCeHZ4Mqt3FfDY5+vtjiNiG6ctCFA3EvXBC7qwcONBXl6YZXcckRNSWlnN3z9cRbCfD8+PTsHLoU2JzmpQ1+Zcf0o87y/Zwdz03XbHEbGFUxcEgMv7tOLClBgmfLWJxRqiJC7swU/WsuVgMc+PSqFZiL/dceRPjBuYQK82TfjHnDVsyymxO45Io3P6gmCM4YmLk2gbFcTtM9LJKa6wO5LIcZu5IpvZq3Zx2xkdOLl9lN1x5Bh4ezl4flQqPt4Obv5wlS6UE4/j9AUBIMjPmxcv7U5BWRV3zVyt/QjiUjbuK+KhuZn0axfJbWd2sDuOHIeY8ADGX5LMur2FPDlf+xHEs7hEQQDo3CKUBwd34ftNB3nzp612xxE5JmWVNdw8tW7fwaRR2nfgis7qEs2Yk9sy5ecdfJm5z+44Io3GZQoC1O1HGJTYnGe+3Eh6dr7dcUT+1KOfr2PLwWImjdS+A1d237md6BYXxrhZq3VXjHgMlyoIv9y+Fh3qz63TVlFYrotVxHnNX7OXact2csMp7ejfQfsOXJmvt4PJo1OpteC26WlU1dTaHUmkwblUQQAIC/ThhdGp7Mkv5/45a3Rfgzil3fll3Dc7g+SW4dx1Tke740g9aB0ZxJNDk0jbmc8L3+i+BnF/LlcQAHq0bsJd53RkXsZePlqxy+44Iv+juqaWO6anUWvBC6NS8PFyyR8zOYoLkmMY3iOOF7/LYsnWXLvjiDQol33luvGUdpwUH8nDn63VGWVxKpO/zWL59kM8fnFXWkcG2R1H6tnDQxJpExnE2BnpFJRqmVPcl8sWBIfDMGFkMj5eDm6fnkZltdYExX7LtuUx+dvNDO0ey4UpsXbHkQYQ5OfN86NSOFhUwf0f61p6cV8uWxAAWoQF8PSwJDJ2FTDx6012xxEPV1BWxdgZ6bSMCOTRC7vaHUcaULe4cO4emMD8NfuYuSLb7jgiDcKlCwLAoK4tGNWrJa9+v4XFWzSKWezz4CeZ7CssZ9LIFIL9vO2OIw3s+gHx9GsXycOf1h1lFXE3Ll8QAB66oAttI4O4c8Zq8kt1NbQ0vk/SdvPp6j3ccWYHUls1sTuONAKHwzBhRAr+PlrmFPfkFgUh0Neb50elkltSoaOP0uiy80p58JNMerZuwt9Pb293HGlEzcP8eXJoNzJ3FzJJy5ziZtyiIAAkxYVx1zkJfJG5j9mrdD2rNI7qmlrGzkgHYOJIjVL2RIO6Nmdkz5a88v0Wlm3LszuOSL1xm4IAcN2AePq0jeBfczPZmatxqNLwXlm4hRU7DvHoRYm0jAi0O47Y5KELutAqIpCxM9I14VXchlsVBC+HYcLIFBwOw50z06nWOFRpQOnZ+Uz6ZjMXJMdwkY40erQgP28mjkxhX2E5/5q71u44IvXCrQoCQGx4AI9d1JUVOw7x6vdb7I4jbqq0spqxM9KJDvHjsYu6YoyWFjxd91ZNuPWM9nx8eMOqiKtzu4IAcGFKLEOSY5j09WZW69ZHaQCPz1vP9twSxo9IJizAx+444iRuOb09KS3DeeDjNezJL7M7jsgJccuCAPDvC7vSLMSPsTPSKa2stjuOuJFvN+znw6U7ubZ/W/q10y2N8v+8vRxMGplCda3FXTNXU1urE1Xiuty2IIQF+jB+RDLbckt4fN56u+OIm8gprmDcrAw6NQ/h7oEJdscRJ9QmKoiHBnfh5625vL1om91xRP4yty0IAP3aRXFt/7Z8uHQn327Yb3cccXGWZXHf7DUUllUzaVQKft5edkcSJzWyV0vO6hzNM19uZOO+IrvjiPwlbl0QAO4emECn5iGMm7WG3OIKu+OIC5uxPJuv1+9n3KAEOjUPtTuOODFjDE8NSyI0wJvbp6dRUV1jdySR4+b2BcHP24tJo1IoLKvSlEX5y7bnlPDo5+vo1y6SMSe3tTuOuICoYD+euaQbG/YVMWGBpizKX7NyRx5Ltuba8txuXxAAOjUP5Z6BCSxYt5+PVuyyO464mOqaWu6cmY63wzB+eDIOTUuUY3RGp2gu7dOK13/catuLvLiuwvIqbpuWzv1z1tgy18cjCgLANf3b0jc+gkc+W6spi3JcXlm4hVU78/n3RV2JCQ+wO464mH+e15nWEYHcNXO1pizKcXn407XsLShj/PBkvL0a/3/XHlMQHA7DcyPqpiyO1ZRFOUYZu/J5/pvNDEmO4UJNS5S/QFMW5a+Yv2Yvc1bt5pbT29OjtT03xHpMQYC6KYv/vrArKzVlUY5BWWUNd8xIp2mIH/++sKvdccSFpf5qyuLnGZqyKH9sf2E5//h4DclxYdx6ZgfbcnhUQQC4MCWGwd1aMOnrzWTs0pRF+X1PfrGerQdLGD88mbBATUuUE/PLlMV/fpzJvoJyu+OIk7Isi3tmZVBeVcOEkSn42LC08AuPKwjGGB6/KImmIX7cMSOdskodP5IjLdx4gPd+3sE1/dtycntNS5QT5+3lYOLIFCqra7n7I01ZlKN77+cd/LDpIP88vwvtmgbbmsXjCgIcnrI4PJmtB0t4Yr6mLMr/yi2u4J5ZGSREh3CPpiVKPWobFcSDg7vwU1YO7y7ebncccTJZB4p4Yv56Tk9oyuV9WtkdxzMLAsDJ7aO4pn9b3l+yg+82HrA7jjgJy7K4f84aCkqrmDQqBX8fTUuU+jW6d0vO7NSMp77coCmL8l+V1bXcPj2dID9vnr6km1PcEOuxBQHgnoEJJESHMG5WBnkllXbHEScwc0U2C9bVTUvs3ELTEqX+GWN4+pJuhPpryqL8vwlfbWLtnkKeHtaNZiH+dscBPLwg+PvUTVksKK3i3tkZmrLo4bbnlPDIZ5qWKA0vKtiPp4fVTVkc/5+NdscRm/28JZfXftjC6N6tOLtLtN1x/sujCwJA5xahjBuUwFfr9jN9ebbdccQm1TW13DGjblricyM0LVEa3pmdo7m8byve+HEbi7Jy7I4jNikoq+Kumem0iQziwcGd7Y7zPzy+IACMObkt/dtH8ehn69hysNjuOGKDyd9mkZ6dzxNDk2gRpmmJ0jj+eV4X2jUN4q6Zq8kv1TKnJ3rwk0z2F1UwaWQKgb7edsf5HyoI/DJlMRk/Hwd3TE+nslpTFj3Jiu15TP52M0NTYxncLcbuOOJBAny9eH5UKrklFfzjY10m52k+SdvNp6v3cMeZHUhuGW53nCOoIBwWHerPU0O7sWZ3AZO+1s1rnqKwvIrbp6cT1ySQRy5MtDuOeKCusWHcdU4C89fsY9ZKXSbnKbLzSnnwk0x6tm7C309vb3eco1JB+JVBXZszundLXvl+i25e8wCWZfHAx5nsKyxn0qgUQvw1LVHscd2AePrGR/Dwp2vZnlNidxxpYNU1tdw+PQ2AiSNT8HLSPU8qCL/x4OAutI0M4s4Z6RSU6uY1d/bxrz7e697KnstQRAC8HIYJI1Lw9nJw+/Q0LXO6uRe+2cyqnfk8PjSJlhGBdsf5XSoIvxHo682kUSkcKKrgvjk6+uiuduSW8NDctfRuE+G0H++JZ4kJD+DpYUms3lXAc1/p6KO7Wro1lxe/y2JY9ziGJDv3nicVhKPoFhfOuEEJfJG5j2nLdPTR3VTV1E0scxiYOMp5P94TzzOoawsu7dOK177fyo+bD9odR+pZQWkVY2ek0yrCNfY8qSD8jmv7xzOgQxSPfLaWTfs1DtWdTPp603+PNMaG60ijOJcHz+9Ch2bB3DlzNbnFFXbHkXpiWRb3f5zBgaIKnh+VSrCfcx1pPBoVhN/xy9HHEH9vbp2aRnmVxqG6g5825/Dywi2M7NlSRxrFKQX4evHC6FQKyqq4+6PVWuZ0EzOWZzN/zT7uOifBKY80Ho0Kwh9oFuLPcyNS2Li/iMfmrbM7jpygg0UV3DEjnfZNg3l4iPN/vCeeq3OLUP5xbie+23iQtxdttzuOnKCN+4p4+LO1nNw+khtOibc7zjFTQfgTp3ZsyvWnxPPBkp18mbnX7jjyF9XWWtw5M52i8ipevLQ7Ab66pVGc25X92nBW52Y89cV6Mnbl2x1H/qLSympumbqKYD8fJo5Mcakx7ioIx+DucxLoFhfGuFkZZOeV2h1H/oJXf9jCj5tzeHhIIgnNQ+yOI/KnjDE8e0kyTYP9LdjYYgAAIABJREFUuHnqKgrKdOzaFf1r7lqyDhYzaWSK09zSeKxUEI6Br7eDF0d3xwJumbpKZ5RdzModeTy3YBPnd2vBqF4t7Y4jcsyaBPky+dJU9uSXc59unHU5c1bt4qOVu7jl9Pb07xBld5zjpoJwjFpFBvLsJcms3lXAE/PX2x1HjlF+aSW3TUsnNjyAJ4cmYYzrfLwnAtCjdQTjBtYdu35/yQ6748gx2nKwmAc+yaR3mwhuP7OD3XH+EhWE4zCoa3OuPrkN7y7ezhdrtB/B2dXWWoydkc7Bogomj04lVKOUxUVdNyCeMzo147HP15O5u8DuOPInyqtquGVqGn7eDl4YnYq3l2v+r9Y1U9vo/nM7k9wynHGzMtiRq5npzuzlhVl8t/EgD17QxWWOFYkcjcNheG54MpHB/9fefUdHVa5tHP7tlEmvpFBCTYcQSAihqiCoKBaKSEeKBeyI3eOxHHtFRFQsFEE6CnzYFUWpCWkQCCSBQAKk9z5lf38EPR5BpSTZU55rrax1dCbkHtchc8/e7/u8Ou5amURlvaxHMGf/3nSAQ6crefOW3rT1sqx1B38kBeEC6RzseHdSDHZ2CnetTJL5CGZqR1Yxb353hJt6t2dKv05axxHikvm46XhnYgwny+uYtzYVk0nWI5ij1XtPsDYxj3uvDGFoRIDWcS6JFISLEOTjyhvjepF+qpJnNqdrHUf8SX5FPfetSibY350XR8u6A2E94rr48sR1kXx3sID3fs7WOo74k/15Ffx7czqXhfrxwPAwreNcMikIF2l490DuGhLM6oRcVu09oXUccYbeaOKez5Ko0xt5b0osbhYwzlSICzFzUBdu6NWeN749LOc1mJHy2kbmrNyHn5uOtyfEWMUZL1IQLsG8q8O5LNSPpzelk3yiTOs4AnjpywwSj5fx8thoQgJk3oGwPoqi8PKYnoQEuHPfqmTyymQ2i9Z+WxBdUFnPoil98HXTaR2pWUhBuAT2dgoLJsQQ4OnEnBVJFFXJwSpa2rAvj092HGP6wC5mf4yqEJfCzcmB96f0wWBUZS2UGXjnx6YF0f++oQe9rWhBtBSES+TjpuODqX0oq23kns+SMBhliJIWUnLLefzz/Qzo1oYnR0ZqHUeIFtfN3503bulFWl4FT29KlyFKGvk2PZ+3vj/CmNgOVrcgWgpCM+jR3ouXx/Zkz7FSXvoqQ+s4Nqewqp7Zn+4jwMOJdyfH4mihe46FuFBX92jL3UODWZOYy/JdMkSptWXkVzJ3TQq9Onpb5YJoWcHVTEbHBJGaW8HHvx4jvK0Ht8TJSN/W0GAwMmdF05z6DXMGWs29PyHO17yrwjmcX8Vz/3eQbv5uXBbqr3Ukm1Ba08jtyxNxc3Jg8dQ+ODta3wFw8lGrGT05MpLLQv148vP97D5aonUcq6eqKk9vSmff8TJeH9eL7u09tY4kRKuzs1OYPyGGEH937l6ZxNGiaq0jWT290cRdK/dRUNnA4mlxBHpa7jCkvyMFoRk52tuxcFIsnXxdmb1in0xabGFLduSwOiGXu4cGMzK6ndZxhNCMu5MDH90ah4O9HbctS6SiViYttqTnthxk99FSXhnb06oWJf6ZFIRm5uXiyMe39gVg5tIEOaK1hXyTns9/th7kmh6BPHhVuNZxhNBcR19X3p/Sh9yyWu5ZJQumW8ryXTl8uvs4d17ejdExQVrHaVFSEFpAFz833p/ShxOltbKzoQWk5pZz/+pkooO8mT/eOgaSCNEc4rv68vyoKH7JLOaZLbKzobl9m57PM5vTGR4ZyCMjIrSO0+KkILSQ/t3a8MKonvySWcxTsgWp2eSW1jJrWSJ+7k58NC0OF531LQwS4lKM79uJO6/oxordJ1j0k4xjbi7JJ8q4b3UyPYO8eWeibXwwkV0MLeiWvh05VlLDez9lE+jpZBWzubVUUadnxtIEGg1GVt/RD38PJ60jCWGWHr0mgoKKel775jABHk6Mk11VlySnuIZZyxIJ8HDm41tt54OJFIQW9sg14RRXNTD/+0z83J2Y0r+z1pEsUr3eyOxPmxZ+Lp/ZT8YoC/E37OwUXr25F0XVDTy2cT/+Hk4MCbfskwW1UlLdwPQle1FVlWUz4/Fzt50PJnKLoYUpisJLY3oyLCKApzYd4Mv9p7WOZHH0RhP3rkpm19ESXr05mgHBbbSOJITZ0znY8f6UPoQHenDXyiT251VoHcni1DQYmLUskdMV9Xx0a1+6+rlpHalVSUFoBQ5ntj/GdPTmgdUp7MqWGQnny2RSeWR9Gt8dLOC5m3pY/aphIZqTh7MjS2f0xcdVx4yle8mWGQnnrV5v5LZliew/WcGCiTH06eyjdaRWJwWhlbjo7Plkel86tXHljuWJpOWVax3J7KmqytOb0/k8+SQPXxPOtAFdtI4khMUJ8HRm+ax4VBUmfbhb5rOch0aDiTkr9rH7WAlvjOvFNT3aah1JE1IQWpG3q47lM+PxcnVkykd75JLfP3j928O/7ze+a0iw1nGEsFjB/u6svL0fjQYTkz7cQ26pHBH9VwxGE/evTmbb4SJeHN2TUTEdtI6kGSkIray9twur7+iPp4sjUz7ew4GTUhLO5Z0fMnl3WzYT4zvx2LURVncIihCtLaKtJ5/O6kdVvZ5JH+3mVHmd1pHMzm+3NL86kM+/r+/OxHjrOp3xQklB0ECQjyurbu+Pu5MDkz+SkvBHqqry2jcZvPHdEcbEdOD5UVFSDoRoJlEdvPh0Vj/Ka/RM/mgPBZX1WkcyG0aTyqMb0th45pbmzMFdtY6kOSkIGuno68rqO5pKwpSP95B+SkqCqqo8v/XQmSsHHXl9XC+bGEYiRGvq1dGbpTP7UlhZz4TFu+V2A01rDu5dlcS6fXk8MDyUu4eGaB3JLEhB0NBvJcFN58DExbvZe6xU60iaMZlU/vXFAT7+9RjTB3bhxdE9sZNyIESL6NPZl+Wz4impbuDm93dypKBK60iaqWs0cvvyRL7cn8+/RkbKQLs/kIKgsY6+rqy5sz9+Hk5M+XgPXx+wvTkJBqOJRzaksXLPCWZfEczTN3SX2wpCtLA+nX1ZO3sAqgrj3t/FvuNlWkdqdZX1eqZ9softmUW8MrYnt13WTetIZkUKghkI8nFlw+yB9GjvyZyVSXy6+7jWkVpNZX3T+OT1+/KYOzyMR0eESzkQopVEtPVk/eyBeJ/ZWfXzkSKtI7Wawqp6Jn24m+QT5bwzMYbxfW17QeK5SEEwEz5uOj67rX/TxMUvDvD6N4et/oCn3NJaxi7aya7sEl4Z25P7h4dKORCilXVq48q62QPo4ufGbcsSWJuYq3WkFnfgZAU3LdxBdmENH06L4/ro9lpHMktSEMyIi86e96f0YULfjizclsV9q1OoaTBoHatFJJ0oY/SiHRRU1rN8Zry0dyE0FODhzJo7+9OvaxseWZ/GM5vT0VvpMfVb005z8/s7UYD1cwYwNELOqPgrUhDMjIO9HS+N6ckjI8LZmnaK0Yt2cNTKxqN+kXySCYt34+bkwMa7BjEwxE/rSELYPM8zY5lvv6wrS3fmMOWjPZRUN2gdq9mYTCpvfXeEuz9Lons7TzbdM5ge7b20jmXWlAu5jB0XF6cmJia2YBzxRzuyirl3VTKNBhOvj+vFiCjLHvdZ22jgmc3prE3MI76LL+9P7YOvm07rWEKIP/k8OY/HNuzHz92JD6b2IaqDZb+RltU08uiGNL49WMDY2CBeHBOFk4NtHNn8TxRF2aeqatw5H5OCYN5OldcxZ2USqbnl3HlFN+ZdFY7OwfIu/KSfquDeVckcK67h7iEhPDA8FAd7y3sdQtiK/XkV3PlpIsU1jTx0dRizBnezyLkkv2QW8dC6VEprGnl0RASzBneVtU5/IAXBwjUYjDy35SAr95wgPNCD18ZFEx3krXWs86KqKst3HeeFrYfwdnVk/vjecktBCAtRUt3A4xv38+3BAuI6+/D6uF50sZAjj+v1Rl79+jCf7DhGSIA788f3tvgrIS1BCoKV+OFQAU9+foDCqnpuv7wbc4eH4exovpfJMvIr+fcX6ezNKWVouD+vj+tFG3cnrWMJIS6Aqqp8kXKSf29Kx2BUeWJkJFP6dTLrT+GpueU8uiGNjPwqbh3QmceujcRFZ76/K7UkBcGKVNbreenLQ6zam0s3PzeeHxVldp/Iq+r1vP19Jkt25uDh7MAj10QwoW9HmYwohAU7XVHHI+vT+CWzmLjOPjwxMpLYTj5ax/ofBZX1vPJ1BhuTTuLv4cSrN0czNFx2KfwdKQhW6NfMYh7bmEZeWR2Xhfrx0NXh9Oqo7W0Hg9HElrRTvPRlBkXVDUzo24lHrgnHRxYiCmEVVFVlbWIur31zhOLqBq7r2ZZHronQ/LZDvd7Ix78e491tWRiMKrMu68rdQ0Nwd3LQNJclkIJgper1RlbsPs6in7IprWnkmh6BzLs6nLBAj1bPsSEpj8Xbj3K8pJaeHbz4z6goemtcWIQQLaOmwcDi7UdZvP0oBpOJyf06M2twVzr6urZqjsp6PWsTclmyI4eT5XVc0yOQJ66LpHMby1gnYQ6kIFi56gYDn/x6jA+3H6W60cDgED9uievI1T0CW3QrT1lNI6sTcvn412MUVzfQK8iLOUNCuLp7oNxOEMIGFFbW89b3R1iTkIsKXBkewNQBnbk81L9FfwccL6lhyY4c1iXmUtNoJL6rL/cPC2WQmd1utQRSEGxEWU0jy3cdZ21iLifL6/B2dWRU7w6MjulAVAevZtmiVFLdwDfpBXx14DQ7s0swmlQuC/VjzpBgBnRrY9YLl4QQLeNUeR2r9p5g1d5ciqsb6OTrys19grgizL/ZfvecKKnl+0MF/JBRwM7sEhzsFG6Ibs/MwV1ld8IlkIJgY0wmlR3ZxaxJyOXb9AIajSY8nByI6+JDfNc29OvmS7C/O57ODn/7hm4wmjhWXMPB05UcPF1JyolyEnJKManQpY0r1/Vsxw292hPZzrMVX50Qwlw1Gkx8k57Pp7uP/358vberI4NC/LgsxI+Idp509HHB1033t7976hqNZBdVk11UzcFTlfyYUUhmYdNE2ZAAd66Lasvk/p0J9HRulddlzaQg2LCymka2Zxax51gpe4+VklX437HNzo52BHo6E+jhjLerIw0GE3WNRmr1BmobjJwsr6PB0DSPXWdvR1hbd4aGB3BtVDsi23nI1QIhxF8qqW7g16xifsks5pfMIgoq/zu22U1nT0dfVwI8nVFVFaPpv1+nK+o5WV73+3Md7BTiu/oyLDKQ4ZEBsr6gmUlBEL8rrm4gMaeMvLJaCirrKahsoKCynvJaPc6Odrjo7HHVOeCis6etpzM92nvSvb0nwf7uOMrkQyHERVBVleyiGo4WVZNbVkduaS25pbUUVzdgZ6dgryjY2zV9+bk7ERLg/vtX5zauMha5Bf1dQZA9IDbGz93J4s90EEJYFkVRfn/DF5ZDPhIKIYQQ4ixSEIQQQghxFikIQgghhDiLFAQhhBBCnEUKghBCCCHOckHbHBVFKQKOt1wcIYQQQrSizqqq+p/rgQsqCEIIIYSwDXKLQQghhBBnkYIghBBCiLNIQRBCCCHEWaQgCCGEEOIsUhCEEEIIcRYpCEIIIYQ4ixQEIYQQQpxFCoIQQgghziIFQQghhBBnkYIghBBCiLNIQRBCCCHEWaQgCGGFFEWZrCjKt63wc4YoipLX0j9HCNH6pCAIYaEURRmsKMpORVEqFEUpVRRlh6IofQFUVV2pqurVZpBxm6IoRYqiVCqKkqooyk1aZxJCnB8HrQMIIS6coiiewP8Bc4C1gA64DGjQMtc53A8cVFXVoChKP+B7RVHCVFU9rXUwIcTfkysIQlimMABVVVepqmpUVbVOVdVvVVVNA1AUZbqiKL/+9mRFUa5WFOXwmasNixRF+VlRlNv++FxFUV5XFKVMUZRjiqJc+4fvnaEoyiFFUaoURTmqKMqd5xtSVdU0VVUNv/0j4Ah0bIbXL4RoYVIQhLBMRwCjoijLFEW5VlEUn796oqIofsB64HGgDXAYGPinp/U78+/9gFeBjxVFUc48VghcD3gCM4C3FEWJPd+giqL8n6Io9cAe4Ccg8Xy/VwihHSkIQlggVVUrgcE0fSr/EChSFGWzoiiB53j6dUC6qqobz3yaXwDk/+k5x1VV/VBVVSOwDGgHBJ75WVtVVc1Wm/wMfEvT7YzzzXo94HEmxzeqqpou6MUKITQhBUEIC6Wq6iFVVaerqhoERAHtgfnneGp7IPcP36cCf955kP+Hx2vP/E93gDNXKHafWQhZTtMbvd8FZtWrqvoVcI2iKDdeyPcKIbQhBUEIK6CqagawlKai8GengaDf/uHMrYOgczzvLIqiOAEbgNeBQFVVvYEvAeVvv/GvOQDBF/m9QohWJAVBCAukKEqEoijzFEUJOvPPHYGJwO5zPH0r0FNRlFGKojgAdwNtz/NH6QAnoAgwnFm8eF7bJ89kvFZRFBdFURwVRZkCXA78fJ4/WwihISkIQlimKpoWFu5RFKWGpmJwAJj35yeqqloMjKNp8WEJ0J2mhYL/uCVSVdUq4D6atlKWAZOAzeeZUQGeoWmRYxFNWx7Hq6qadJ7fL4TQkNJ0O1IIYSsURbGjaQ3CZFVVt2mdRwhhnuQKghA2QFGUaxRF8T6zpuAJmj7dn+t2hBBCAFIQhLAVA4BsoBi4ARilqmqdtpGEEOZMbjEIIYQQ4ixyBUEIIYQQZ7mgw5r8/PzULl26tFAUIYQQQrSmffv2Fauq6n+uxy6oIHTp0oXERBmjLoQQQlgDRVGO/9VjcotBCCGEEGeRgiCEEEKIs0hBEEIIIcRZpCAIIYQQ4iwXtEhRCHHpjCaVw/lV5JTUkFtay4nSWnLL6iitacBeUbC3++9XoKczwf7uhAS4E+zvThc/V5wc7LV+CUIIGyAFQYhWcLqijl+OFLM9s4gdWcWU1ep/f8zb1ZFOvq4EeDhjUlWMJhWDUcVgMpGYU8amlFO/P9fRXqF/tzYMiwhgWGQgHX1dtXg5QggbcEGTFOPi4lTZ5ijE+alrNLI59SQrdp9g/8kKAAI8nLgs1J/BoW0IC/Sgo68rns6Of/vn1DYaOFpUQ3ZRNQdOVvBDRiFHi2oACA/04Prodkzs1wk/d6cWf01CCOuiKMo+VVXjzvmYFAQhmld2UTUrd59g/b5cKusNhAW6MzY2iCvC/QkP9EBRlEv+GceKa/jhUAHfHixg77FSdA52jO7dgZmDuxLe1qMZXoUQwhZIQRCiFeSW1vLqN4fZknoKR3uFEVHtmNq/M327+DRLKfgrWYXVLNlxjA1JedTrTQwO8WPuVWH06ezTYj9TCGEdpCAI0YLKaxtZ+GMWy3cdx84OZg3uyq0DuxDg4dyqOcpqGlmVcIIlO3IoqmpgVO/2PHptBO28XFo1hxDCckhBEKIFGIwmlu7MYcEPmVQ1GBjXJ4gHrwqnrVfrFoM/q2kw8P7P2Xyw/Sj2isKcIcHccXk3nB1l94MQ4n9JQRCimR0tqmbeulSST5RzeZg/T1wXQURbT61j/Y/c0lpe/iqDrftPE+TjwhvjetGvWxutYwkhzIgUBCGaicmksmxXDq98nYGTgz3P3dSDG3u1b9E1Bpdq99ESHtuQxvHSWmZfEczc4WHoHGRGmhDi7wuCzEEQ4jydLK/jobWp7DpawpBwf14ZG02gp7a3E85H/25t2HrfZTy35SDv/ZTNL5lFzB8fQ0iAu9bRhBBmTD5GCHEedmYXc8M7v5KWV87LY3qyZHpfiygHv3FzcuCVm6N5f0ofTpbVcf07v7Am4YTWsYQQ/2D13hO8+nWGJj9briAI8TdUVWXpzhye33qIrn5uLJ7ah27+lvvJe0RUW2I6efPg2hQe3bCfjPwqnrwuEgd7+awghDkxGE288OUhluzI4fIwf/RGE46t/PdUCoIQf6Feb+TJzw+wISmP4ZGBvDW+Fx7/MPXQEgR6OrNsRvzvv3yyCqtZODEWL1fLf21CWIOKOj33fJbEL5nFzBzUlSeui9CkxEtBEOIcCqvquX1ZIql5Fdw/LJT7h4ViZ2e+CxEvlIO9HU/f0IPwQA+e2nSA0Yt28NGtcRZ9dUQIa3C0qJrblic27UIa05MJ8Z00yyLXFYX4kxMltYx7fxdHCqr5YGof5l4VZlXl4I8mxHdixax+lNfpGfXuDvYeK9U6khA2KyGnlFHv7qC8Vs+KWf00LQcgBUGI/3HodCVj399JRZ2elbf345oebbWO1OL6dWvDprsH4efhxLRP9vDzkSKtIwlhc34+UsTUj/fg5+HEprsHmcXMEikIQpyRmFPK+A92Ya8orLtzALGdbOcsg46+rqy9cwDd/Ny5bVkCX+0/rXUkIWzGV/tPc9uyBLr5ubP2zgFmc4y7FAQhgG0ZhUz5eA9+7k6snzOA0EDbOxHRz92JVXf0JzrIm7s/S2JdYq7WkYSweuv35XH3Z0lEB3mz6o7+ZnVsuxQEYfO2ZRRyx6eJhAS4s3b2AIJ8zKO9a8HLxZFPZ8UzKMSPh9ensWxnjtaRhLBay3bm8NC6VAaF+PHprHi8XMxrJ5EUBGHTfsks4s4V+wgL9GDlLPNq71px1Tnw0a1xXN09kKc3p7Nyz3GtIwlhdVbsPs7Tm9O5unsgH90ah6vO/DYVSkEQNmv30RJuX55INz83VszqJ3MA/sDJwZ6Fk2K5MiKAf31xgI1JeVpHEsJqbEzK46lNB7gyIoCFk2JxcjDPk1alIAiblJhTysylCXT0cWXFbf3wcdNpHcns6BzsWDQ5lgHd2vDQulS+lIWLQlyyL/ef5qF1qQzo1oZFk2PN+uA0800mRAtJyytn+pIEAj2dWXlbP7mt8DecHe35cFocMZ18uG9VMj9mFGgdSQiL9WNGAfetSiamkw8fTovD2dE8rxz8RgqCsCk5xTXMWJKAt6sjn93ejwALOnBJK25ODiyZ0ZfIdp7MXpHEruwSrSMJYXF2ZZcwe0USke08WTKjL25O5rfm4M+kIAibUVzdwK1L9mJSVZbPjKedl4vWkSyGp7Mjy2fG09nXlTs+TeRwfpXWkYSwGIfzq7hjeSKdfV1ZPjMeTws500UKgrAJNQ0GZi5NoKCyno+n95UzBy6Cj5uOpTPjcXG0Z8aSvRRU1msdSQizl19Rz/Qle3HR2bN0ZrxFrXeSgiCsnt5o4u7PkjhwsoKFE2NtakJic+vg7cKSGX2pqNMzfUkCVfV6rSMJYbaq6vXMWJpAZZ2eT6b3pYO3ZV21lIIgrJqqqjyxcT8/HS7ihdE9Gd49UOtIFq9Hey8WTenDkYIq7lqZhN5o0jqSEGZHbzRx18okjhRUsWhKH6I6eGkd6YJJQRBW7f2fj7JuXx73DQtlosYno1mTK8L8eWl0T37JLObxjftRVVXrSEKYDVVVefLz/fySWcyLo6O4Isxf60gXxfyXUQpxkb47WMCr32RwQ6/2zB0eqnUcq3NL347kldex4IdMQgPcufOKYK0jCWEWFm8/ytrEPO67MoTxfS33g4kUBGGVMvIreWB1Mj07ePHazdEoiqJ1JKs0d3go2YXVvPx1BmGBHgyNCNA6khCa2pZRyMtfZzCyZzvmXhWmdZxLIrcYhNUpqW7gtmWJuDs7WMQwEkumKAqvjYsmsq0n961KJquwWutIQmgmq7Ca+1YlE9nWk9fGWf4HEykIwqo0GkzMXrGPoqoGFk+NI1AGIbU4V50DH94ah87BjtuXJ1JRKzsbhO2pqNVzx/JEdA52fGimhy9dKCkIwqo8vfkACTllvDauF706emsdx2Z08Hbh/al9yCur5Z5VSRhkZ4OwIUaTyr2rk8ktq+X9qX0sbjvjX5GCIKzG6r0nWLU3lzlDgrmxV3ut49icvl18+c9NUfySWcwrX2doHUeIVvPK1xlsP1LEf26Kom8XX63jNBvLvwYiBE0HMP17czqDQ/x46OpwrePYrAnxnTh4upIPfzlGTCcfruvZTutIQrSoL/efZvH2o0wb0JkJVraVWq4gCItXWtPInBVJ+Ls7sWBiDPZ2lr0wyNL9a2R3Yjp58/C6VFm0KKxadlE1D69LJaaTN/8a2V3rOM1OCoKwaEaTyv2rkymqauC9KbH4WtCcc2ulc7Bj0eRYnBztmbNiHzUNBq0jCdHsahoMzP50H06O9iyaHIvOwfreTq3vFQmb8tZ3R/gls5jnbupBdJAsSjQX7bxceGdiDNlF1TJpUVgdVVV5fON+souqeWdijNWeDCsFQVisHw4VsHBbFhP6drS6e3/WYFCIH/OuDmdz6imW7czROo4QzWb5ruNsTj3FvKvDGRTip3WcFiMFQVikU+V1zFuXSvd2njxzYw+t44i/MOeKYIZHBvD81kMknSjTOo4QlyzpRBnPbz3I8MgA5lj5eHEpCMLi6I0m7l2VjMGo8u7kWJmUaMbs7BTeGNebtl7O3PtZsgxREhatolbPvZ8lE+jpzBvjemNn5QuipSAIi/P6t4fZd7yMl8b0pKufm9ZxxD/wcnVk4aRYCirreWRDqqxHEBZJVVUe2ZBKQWU9CyfF4uXqqHWkFicFQViUHzMK+ODno0zu14kbZBiSxejd0ZvHro3gm/QCWY8gLNLyXcf5Jr2Ax66NoLeNTGmVgiAsxqnyOuatTSWynSdPXW99e46t3azBXRkWEcCLX2awP69C6zhCnLcDJyt4YeshhkUEMGtwV63jtBopCMIiGIwm7l+dTKPBxLuTYmTdgQVSFIXXx/WijbuOe1YlUVUv6xGE+auq13PPZ0m0cdfx+rheFn9C44WQgiAswoIfs0jIKePFMT3p5u+udRxxkXzcdCyYGENeWR1PfH5A1iMIs6aqKk9+foDcsjoWTIzBx8YGsUlBEGZv77FSFv6YyZjYDtzUu4PWccQl6tvFlwevCmNL6inW78vTOo4Qf2n9vjw2p55i7vAQ17OoAAAY+klEQVRQqzqE6XxJQRBmraJWzwOrk+nk68pzN0VpHUc0k9lXBNO/my9Pb07nWHGN1nGEOMux4hqe3pxO/26+zBkSonUcTUhBEGZLVVUe25hGUXUDCybG4O4kh49aC3s7hbfG90bnYMd9q5rWlghhLhoNTWueHO3teGt8b5s9AE4KgjBbqxNy+epAPg9dHS7nLFihdl4uvDwmmv0nK3jju8NaxxHid298d5i0vApeGRtttecsnA8pCMIsZRVW8eyWdC4L9eP2y7ppHUe0kBFRbZnUrxMf/HyUXzOLtY4jBL9mFvPBz0eZ1K8TI6Laah1HU1IQhNlpMBi5b1UKrjoH3hjXy+rHmdq6p0Z2JyTAnQfXplBS3aB1HGHDSmsaeXBtCiEB7jw1UmatSEEQZufNb49w8HQlr46NJsDTWes4ooW56OxZMCGG8lo9j26Qo6GFNlRV5dENaZTX6lkwIQYXncxakYIgzMrO7GIW/9J0eW9490Ct44hW0r29J4+MCOf7QwWsTsjVOo6wQasTcvnuYAGPjAine3tPreOYBSkIwmyU1zby4JpUuvq58a+RkVrHEa1s5qCuDA7x47ktBzlaVK11HGFDjhZV89yWgwwO8WPmINsZpfxPpCAIs/DbxLLi6gbeHh+Dq062NNoaO7umUcw6BzvmrklBb5Stj6Ll6Y0m5q5JQedgx+uy5ul/SEEQZmFD0km27j/Ng1eH0TPIS+s4QiNtvZx5aUxPUvMqWPBDptZxhA1Y8EMmqXkVvDSmJ229ZM3TH0lBEJrLLa3lmc3pxHf15c7Lg7WOIzR2Xc923NwniHe3ZZGYU6p1HGHFEnJKeXdbFjf3CeK6nu20jmN2pCAITRlNKnPXpKAAb97Sy2Ynlon/9cyNPQjyceWBNSly6qNoEVX1euauSaGDjwtP3yBbGs9FCoLQ1Ps/Z5N4vIznRjW9IQgB4O7kwFvje3GqvI5ntxzUOo6wQs9uOcip8jreuqU3Hs6OWscxS1IQhGb251Xw1ndHGBndjlFySqP4kz6dfbl7aAjr9+Xx9YHTWscRVuTrA6dZvy+Pu4aEEGeDpzSeLykIQhN1jUYeWJOMn7sTL4yKQlHk1oI4233DQokO8uLxjfsprKzXOo6wAoWV9Ty+cT89O3hx//BQreOYNSkIQhMvf3WI7KIaXh/XC29XndZxhJn67TS9Or2Rh9enyZRFcUlUVeXh9WnU6Y28Nb43jvbyFvh35L+OaHU/Hyli2a7jzBjUhcGhflrHEWYu2N+dJ66L5OcjRXy6+7jWcYQFW7H7OD8fKeKJ6yIJCXDXOo7Zk4IgWlVZTSMPr0slNMCdR0dEaB1HWIip/TtzRZg/L2w9RFahTFkUFy67qJoXvjzEFWH+TO3fWes4FkEKgmg1qqryxOf7KattZP6E3jg7ymEo4vwoisJrN0fjqrNn7poUGg0yZVGcv9+mJbo42vPazdGy5uk8SUEQrWZj0km+OpDPg1eF06O9TEsUFybAs2nK4v6TFbzzo0xZFOdvwQ+ZpJ2ZlignxJ4/KQiiVeSW1vL05nTiu/hyx+XdtI4jLNSIqP9OWdx3XKYsin+27/h/pyWOiJJpiRdCCoJocUaTyry1qQC8IdMSxSV6+obutPd2Ye6aVKobDFrHEWasusHA3DWptPeWaYkXQwqCaHGLtx9lb04pz9zYg46+Mi1RXBoPZ0feGt+bvLJa/iNTFsXf+M+Wg+SW1fLWeJmWeDGkIIgWlX6qgje/O8y1UW0ZGyvTEkXz6NvFl9lXBLMmMZdv0vO1jiPM0Dfp+axJzGX2FcH0lWmJF0UKgmgx9Xoj969OwcdVxwuje8rKYdGsHhgeRo/2nk1TFqtkyqL4r8KqpmmJPdp7Mnd4mNZxLJYUBNFiXv4qg6zCal4f1wtfN5mWKJqXzsGO+eN7U9Ng4FGZsijOUFWVR9enUd1gYP743ugc5G3uYsl/OdEifjpcyNKdOcwY1IXLw/y1jiOsVGigB09cF8m2wzJlUTT5dPdxth0u4olrIwgN9NA6jkWTgiCaXWlNIw+vTyMsUKYlipY3bcB/pyxmFlRpHUdoKLOgihe2Nk1LvHVgF63jWDwpCKJZqarKYxvSqKjVM398jExLFC1OURReGxeNm5MD969OocFg1DqS0ECjwcT9q1Nwc3LgtXEyLbE5SEEQzWptYi7fHizg4WvC6d7eU+s4wkYEeDjzythoDp6u5M1vj2gdR2jgje8Oc/B0Ja+MjSbAQ6YlNgcpCKLZHCuu4dktBxkY3IZZg7tqHUfYmKu6BzIxvhOLfznKzuxireOIVrQru4TF248yMb4TV3UP1DqO1ZCCIJpF0+W9ZHQOdrxxSy/sZFqi0MBT10fStY0b89amUl7bqHUc0QoqavXMW5tC1zZuPHV9pNZxrIoUBNEs3vzuCGl5Fbw8Jpp2Xi5axxE2ylXnwPwJvSmubuCxDftl66OVU1WVxzamUVjVwPwJvXHVOWgdyapIQRCXbEdWMR9sz2ZifCdGRLXVOo6wcdFB3jx0dThfp+ezOiFX6ziiBa1OyOWrA/k8fE040UHeWsexOlIQxCUprWnkwbUpdPOTy3vCfNx+WTcGh/jx7JZ0sgpl66M1yiqs4tkt6QwO8eP2y+SE2JYgBUFcNFVVeXRDGmU1et6eECOX94TZsLNTePOWXrjqHLh3VQr1etn6aE3q9UbuXZWCq86BN2XNU4uRgiAu2so9J/juYAGPjAgnqoOX1nGE+B8Bns68dnM0h05X8urXh7WOI5rRK19ncOh0Ja/dHE2Ap2xpbClSEMRFOXS6kuf+7yCXh/kzc5BsaRTmaVhkINMHduGTHcfYllGodRzRDLZlFLJkRw7TB3ZhWKRsaWxJUhDEBatpMHD3Z0l4uTjK5T1h9h67NoKIth7MW5dKfoWc+mjJ8ivqmbculYi2Hjx2rYxxb2lSEMQF+/emdI4V1/D2hN74uTtpHUeIv+XsaM/CSbHU643ctyoZg9GkdSRxEQxGE/etSqZeb+TdybEyxr0VSEEQF2TDvjw2JOVx75WhDAz20zqOEOclJMCd50dFsTenlLd/yNQ6jrgIb/+Qyd6cUl4YHUWwv7vWcWyCFARx3rKLqnlq0wH6dfXl/mGhWscR4oKMiQ1iXJ8gFm7L4tdMGcVsSX7NLGbhtixuiQtidEyQ1nFshhQEcV7q9UbuXpmEs6M9b0+IwV7WHQgL9OxNPQjxd+eBNckUVsp6BEtQWFnPA2uSCfF355kbe2gdx6ZIQRDn5elN6WTkV/HGuF609ZJtRcIyueoceHdyLNUNBu5fnYLRJKOYzZnRpPLAmhSqGwy8OzlWZq20MrMoCAk5pTIz3YytTchlTWIu9wwNYWhEgNZxhLgkYYEePHdTFLuOlvDWd3I0tDmb//0RdmaX8NxNUYQFemgdx+ZoXhB+OlzIuPd38enu41pHEeeQfqqCpzYdYFBIG+ZeFaZ1HCGaxS1xHbklrmk9wvcHC7SOI87h+4MFvPNj07qDW+I6ah3HJmleEC4P9WdYRADPbTlIYk6p1nHEH1TU6ZmzIgkfV52sOxBW57mboojq4MnctSkcL6nROo74g+MlNcxdm0JUB0+euylK6zg2S/OCYGen8Ob43nTwceGulUmycMhMmEwq89amcqq8jncnx8q8A2F1nB3teW9yH+wUhdkrkqhrlPMazEFdo5HZK5KwUxTem9xH5h1oSPOCAODl4sgHU/tQVd80oU8vg0w098H2o3x/qIAnR0bSp7OP1nGEaBEdfV2ZP6E3GfmV/OuLA7IWSmOqqvLkF/vJyK9k/oTedPR11TqSTTOLggAQ0daTl8f2JCGnjBe2HtI6jk376XAhr36TwfXR7Zg+sIvWcYRoUUPDA7h/WCgbkvJYueeE1nFs2so9J9iYdJL7h4UyNFwWRGvNbAoCwE29OzBzUFeW7szhi+STWsexSUeLqrl3VTKRbT159eZoFEXWHQjrd9+VoQwN9+fZLensPSZrobSw91gpz25JZ0i4P/ddKYPYzIFZFQSAx6+LIL6rL49uSCM1t1zrODalsl7PbcsTcbS3Y/G0PrLnWNgMOzuF+RNi6OjryuwV+8gtrdU6kk3JLa1l9op9dPRx5e0JMXIAnJkwu4LgaG/HojOL4m5fniinr7USo0nlgdUpnCipZdHkWIJ85N6fsC1eLo58NC0Og9HE7csTqWkwaB3JJtQ0GLh9eSJ6o4kPb43Dy8VR60jiDLMrCAB+7k58PD3u9//jyOrilvfGt4f5MaOQp2/sQf9ubbSOI4Qmuvm7s3BSLEcKqpi7JgWTTFpsUSaTytw1KRwpqOLdSbFyCJOZMcuCAE2LFhdMjOHAqQrmrZO/qC3pi+STLPopm0n9OjG1f2et4wihqcvD/PnXyO58e7CAt76XSYstaf73R/j2YAFPjuzO5WH+WscRf2K2BQFgWGQgj18bwZf785kvR7S2iF3ZJTy8PpV+XX155gY5CEUIgBmDujA+riPv/JjFphRZMN0SNqWcZMGZSYkzB3XROo44B7NfhXb7Zd3ILKhmwQ+ZdPNzY1RMB60jWY2swiru/DSRzm3cWDw1Dp2DWfdFIVqNoij8Z1QUOSU1PLQuFX8PJwYG+2kdy2rsyi7h4XVpxHf15T+jomS3lJky+3cERVF4YXRP+nX15eH1qXKOezMprKrn1k8S0DnYs2R6X7xcZWGQEH+kc7Bj8dQ4uvq5cefyfWTkV2odySpk5Fdyx6eJdG7jyodT43BykEmJ5srsCwKc+Ys6LY5gf3fu/DSRAycrtI5k0WobDcxamkhpTSOfTI+TaWVC/AUvV0eWzIjH1cmeGUsSOF1Rp3Uki3a6oo4ZSxJwcbRn6cx4+WBi5iyiIEDTFqSlM+LxdtUxfUkCJ0pkn/LF0BtN3PtZMumnKlg4KYboIG+tIwlh1jp4u7BkejxV9QZmLEmgsl6vdSSLVFmvZ8aSBKrqDSydEU8HbxetI4l/YDEFAaCtlzPLZvbFYDIx7ZM9FFc3aB3JophMKg+vS+WHjEKevSmKYZGBWkcSwiJ0b+/J+1P6kFVYzZ3L91Gvl63XF6Jeb+TO5fvIKqzm/Sl96N7eU+tI4jxYVEEACAnw4ONb+5JfWc/MpQlUSZs/L6qq8tSmA3yRcoqHrwmX7YxCXKDBoX68Ni6aXUdLuGtlEo0GOVTufDQaTNy9MoldR0t4bVw0g0NlsaelsLiCANCnsw/vTorl4KlKpi9JoFomnv0tVVV56asMVu45wZwhwdw9NETrSEJYpNExQTw/KoofMwq5f3UyBjl59m8ZjCbuX53MDxmFPD8qitExQVpHEhfAIgsCNM1IWDAxhpTccmYuSaC2UUrCX3nnxywWbz/KtAGdeeSacK3jCGHRpvTvzFPXd+erA/nMW5eKUYa4nZPRpDJvXSpfHcjnqeu7M0WuWlociy0IANf1bMf88b1JPF7KzKUJMpL5HBZvz+bN744wJrYDz9zQQ/YbC9EMZg3uysPXhLMp5RSPb0yTSa9/YjKpPL4xjU1nbmnOGtxV60jiIpj9oKR/ckOv9pjUpnnety1P4ONb++LsKPtqVVVlwQ9ZvPX9EUZGt+PVsdFyQpoQzejuoSHU642882MW9nZ2PD8qCnv5O4bJpPKvTQdYm5jHfVeGyC1NC2bxBQHgpt4dMBhVHlqfyqxlCXwwNQ53J6t4aRdFVVVe/iqDD7YfZWxsEK+M7YmDvUVfLBLCLD14VRhGk8qin7KpbjDwxrheNj2RtNFgYt66VLaknuKuIcHMvSpM60jiEljNu+jYPkEoCjy8Po2Ji3ezZEZf/NydtI7V6kwmlX9vPsCK3SeYNqAzz9zQQ64cCNFCFEXhkREReDg78srXGVTV63lvch9cdLZ3FbOu0ciclfv46XARj46IYM6QYK0jiUtkVVV3TGwQH07rQ2ZhFTe/t5PcUtsapmQwmnhofSordp9g9hXBPHujlAMhWsOcIcG8NKYnPx8pYtone6ios63t1xV1eqZ9soefjxTx0pieUg6shFUVBIArIwJZeVs/ymr1jHlvJwdP2cb89Io6PTOWJrAx6STzrgrj0RHhsiBRiFY0Mb4T75zZWTVx8W4KKuu1jtQqCivrmbh4Nym55SycGMvE+E5aRxLNxOoKAkCfzr6snz0ABzuF8R/sYvuRIq0jtaic4hrGLNrB7qMlvHpzNPcOC5VyIIQGro9uz4fT4sgpqeGGd34lJbdc60gtKjW3nBsW/kpOSQ0f3dqXkdHttI4kmpFVFgSA0EAPNswZSAcfF25dspd3t2Whqta3FWn30RJGLdpBaU0jK2b145a4jlpHEsKmDQkPYMOcgegc7Ljlg11sTMrTOlKL+Dw5j3Ef7MLR3o4NcwZyRZi/1pFEM7PaggDQ3tuFjXcNZGTPdrz2zWHuWplkNVMXVVVl1d4TTP14D37uTnxx9yD6dWujdSwhBBDZzpPN9wwmtpM3D65N5cUvD1nNQCWjSeXFLw8xd00qsZ282XzPYCLbydkK1shqdjH8FVedA+9MjKFXkDcvfXWIrMJqPpjah27+7lpHu2gVdXqe+Hw/W9NOc3mYPwsnxeDpLMemCmFOfN10fDqrH//5v4Ms3n6UQ6creX1cLwI9nbWOdtEKK+uZty6VXzKLmTagaaKko2yhtlrKhVx2j4uLUxMTE1swTsvamVXMPauSadAbefy6SCbFd7K4Vf4JOaU8sDqFgsp6Hrw6jDsvD5bhLEKYudV7T/DMlnScHe15YVRPi7xX/+X+0zz5+X7q9EaevqGHLEa0Eoqi7FNVNe6cj9lSQQA4VV7HI+vT+DWrmEEhbXhlbDRBPq5ax/pHBqOJBT9msfDHTDr6uvL2hBh6d/TWOpYQ4jxlF1Xz4JoUUvMqGB3TgWdu7IGXi/lf+auo0/PM5nQ+Tz5JryAv3hzfm2ALvgIr/pcUhD9RVZXP9p7gxa2HAHhiZNPVBHNd+b8ru4RnNqdzuKCKsbFBPHtTD5ueFCmEpdIbTby7LYt3fswi0MOJ526KYlhkgFn+7lFVlR8zCnnqiwMUVDVwz9AQ7rkyRG4pWBkpCH8ht7SWxzamsSOrhJhO3jx+bSTxXX21jvW7U+V1vPDlIbamnSbIx4Wnru/ONT3aah1LCHGJUnLLmbc2heyiGgaFtOHJ67rTvb35LPQ7dLqSF7Ye4tesYoL93Xjjlt5yxdJKSUH4G6qqsi4xjze+O0xBZQPDIgJ4ZEQE4W09NMtUWa9n6Y4c3vspG5OqMmdIMLOvCJZDqISwInqjiZW7jzP/h0wq6vSMj+vIg1eHEeCh3SLGwqp63vz2CGsTc/F0ceSBYaFM7t9ZrhpYMSkI56Gu0cjSnTks+imL6gYDo3t3YObgrkR18Gq1DKfK6/jk12OsTsilusHAiB5teXJkJB19zX+NhBDi4lTU6lnwYybLd+XgYGfH6NgOTB/YhbDA1vuQkllQxbJdOWzYdxKDycStA7pw75WheLma/xoJcWmkIFyA8tpG3vspm2W7cqjXm4gO8mJifCdu7NUetxa47280qSSfKGPF7uP8X9ppVOCG6Hbcdlm3Vi0nQghtHSuuYdG2LDalnqLRYGJQSBtuHdCFYZGBLbJTyWhS+eFQAct25bAjqwSdgx039mrPPUND6OLn1uw/T5gnKQgXoaJOzxfJJ/lszwkOF1ThprPnmh5tGRTix8CQNrTzcrnoP7vBYGRndgnfpufz3cFCiqsbcNPZMzG+EzMGd6WD98X/2UIIy1Za08iqvSdYsfs4pyvqaeOm44pwf4aGB3B5qP8lfaovr21ke2YxPx0uZPuRIoqrG2nn5cyU/p2Z0LcjbWzwBFxbJwXhEqiqStKJclbtPcEPhwooq206pa2bnxv9g9sQ4u9Oe28X2ns7097bBV9XHY1GU9OXwUS93kheWR1HCqrIyK/iSH4Vh05XUtNoxE1nz5CIAK7uHsiVEQF4yLAjIcQZBqOJ7w4W8HV6PtuPFFFWq8dOgZhOPkS09aCrnxtd2rjRxc+NQE8n7P6wE0IF8ivqySmuIaekhmPFNRw6XUlKbjkmFbxdHbk81J9ro9pyVfdAHGSNgc2SgtBMTCaVjPwqdmYXsyu7hL3HSqm6gNHNns4ORLT1JKKdB0PC/RkY7CcLD4UQ/8hoUknNK+enjEJ+zSomu6jmgo6U9nR2ICTAncEhflwRHkDvjt4yYE0AUhBajKqqlNXqOVVe9/tXWa0enYMdTme+dA52tPVyITzQg0BPJ7Pc7yyEsDxlNY0cK6khp7iG4uqG/3lMVSHA04nObdzo2sYNHzedRimFufu7giDTdi6Boij4uunwddPJgkIhRKvycdPh46YjtpOP1lGElZIbT0IIIYQ4ixQEIYQQQpxFCoIQQgghziIFQQghhBBnuaBdDIqiFAHHWy6OEEIIIVpRZ1VV/c/1wAUVBCGEEELYBrnFIIQQQoizSEEQQgghxFmkIAghhBDiLFIQhBBCCHEWKQhCCCGEOIsUBCGEEEKcRQqCEEIIIc4iBUEIIYQQZ5GCIIQQQoiz/D+FhXpzEVcTjgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 648x648 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Our data...\n",
"x = np.linspace(0, 10, 100)\n",
"y1, y2, y3 = np.cos(x), np.cos(x + 1), np.cos(x + 2)\n",
"names = ['Signal 1', 'Signal 2', 'Signal 3']\n",
"\n",
"fig = plt.figure(figsize = (9,9))\n",
"sig1 = fig.add_subplot(311)\n",
"sig1.plot(x, y1)\n",
"sig1.title.set_text(names[0])\n",
"sig1.axes.xaxis.set_visible(False)\n",
"sig1.axes.yaxis.set_visible(False)\n",
"sig2 = fig.add_subplot(312)\n",
"sig2.plot(x, y2)\n",
"sig2.title.set_text(names[1])\n",
"sig2.axes.xaxis.set_visible(False)\n",
"sig2.axes.yaxis.set_visible(False)\n",
"sig3 = fig.add_subplot(313)\n",
"sig3.plot(x, y3)\n",
"sig3.title.set_text(names[2])\n",
"sig3.axes.xaxis.set_visible(False)\n",
"sig3.axes.yaxis.set_visible(False)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
%% Cell type:code id: tags:
```
python
import
pandas
as
pd
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
scipy
import
stats
```
%% Cell type:code id: tags:
```
python
df
=
pd
.
read_csv
(
'
HospitalAdmissionsData.csv
'
)
```
%% Cell type:code id: tags:
```
python
df
.
columns
```
%% Output
Index(['ID', 'AdmissionLengthDays', 'Death_1', 'Admission_Type',
'Insurance_Type', 'EnglishLanguage_1', 'Religion_Type', 'Married_1',
'Race', 'Dx'],
dtype='object')
%% Cell type:code id: tags:
```
python
df
.
dtypes
.
value_counts
()
```
%% Output
object 5
int64 4
float64 1
dtype: int64
%% Cell type:code id: tags:
```
python
df
[
"
Insurance_Type
"
].
unique
()
```
%% Output
array(['private', 'medicare', 'government', 'medicaid', 'self pay'],
dtype=object)
%% Cell type:code id: tags:
```
python
df
.
describe
()
```
%% Output
ID AdmissionLengthDays Death_1 EnglishLanguage_1 \
count 58863.000000 58863.000000 58863.000000 58863.000000
mean 29508.211984 10.138978 0.099417 0.571072
std 17026.189024 12.465611 0.299224 0.494927
min 1.000000 -0.945139 0.000000 0.000000
25% 14762.500000 3.743056 0.000000 0.000000
50% 29523.000000 6.465972 0.000000 1.000000
75% 44254.500000 11.798264 0.000000 1.000000
max 58976.000000 294.660417 1.000000 1.000000
Married_1
count 58863.000000
mean 0.410665
std 0.491959
min 0.000000
25% 0.000000
50% 0.000000
75% 1.000000
max 1.000000
%% Cell type:code id: tags:
```
python
print
(
df
[
"
Admission_Type
"
].
mode
())
print
(
df
[
"
Insurance_Type
"
].
mode
())
print
(
df
[
"
Religion_Type
"
].
mode
())
print
(
df
[
"
Race
"
].
mode
())
print
(
df
[
"
Dx
"
].
mode
())
```
%% Output
0 emergency
dtype: object
0 medicare
dtype: object
0 catholic
dtype: object
0 white
dtype: object
0 newborn
dtype: object
%% Cell type:code id: tags:
```
python
fig
,
ax
=
plt
.
subplots
()
df
[
"
AdmissionLengthDays
"
].
hist
(
ax
=
ax
,
bins
=
100
,
bottom
=
0.1
)
ax
.
set_yscale
(
'
log
'
)
```
%% Output
%% Cell type:code id: tags:
```
python
# Our data...
x
=
np
.
linspace
(
0
,
10
,
100
)
y1
,
y2
,
y3
=
np
.
cos
(
x
),
np
.
cos
(
x
+
1
),
np
.
cos
(
x
+
2
)
names
=
[
'
Signal 1
'
,
'
Signal 2
'
,
'
Signal 3
'
]
fig
=
plt
.
figure
(
figsize
=
(
9
,
9
))
sig1
=
fig
.
add_subplot
(
311
)
sig1
.
plot
(
x
,
y1
)
sig1
.
title
.
set_text
(
names
[
0
])
sig1
.
axes
.
xaxis
.
set_visible
(
False
)
sig1
.
axes
.
yaxis
.
set_visible
(
False
)
sig2
=
fig
.
add_subplot
(
312
)
sig2
.
plot
(
x
,
y2
)
sig2
.
title
.
set_text
(
names
[
1
])
sig2
.
axes
.
xaxis
.
set_visible
(
False
)
sig2
.
axes
.
yaxis
.
set_visible
(
False
)
sig3
=
fig
.
add_subplot
(
313
)
sig3
.
plot
(
x
,
y3
)
sig3
.
title
.
set_text
(
names
[
2
])
sig3
.
axes
.
xaxis
.
set_visible
(
False
)
sig3
.
axes
.
yaxis
.
set_visible
(
False
)
plt
.
show
()
```
%% Output
%% Cell type:code id: tags:
```
python
```
This diff is collapsed.
Click to expand it.
Workshop3/checkpoint3.ipynb
0 → 100644
+
643
−
0
View file @
1d3ae221
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment