Newer
Older
#!/usr/bin/env python3
import sys
# sys.path.insert(0,'/home/shensq/LIT/pip_package') # make sure the modified version of pytorch_transformer
import transformers
# assert pytorch_transformers.__file__[-36:]=='pip_package/transformers/__init__.py'
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import argparse
import logging
import pickle
import re
from tqdm import trange
import random
import torch
import torch.nn.functional as F
import numpy as np
from torch.utils.data import Dataset,DataLoader
from torch.autograd import Variable
from tqdm import tqdm, trange
from rouge import Rouge
from utils import clean_text,text_standardize,values_lexicon_encode
from gpt_loader import GptDataset, collate_fn, GptDataset_aug, get_data
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# import nltk
# from nltk.translate.meteor_score import meteor_score
def top_k_logits(logits, k):
"""
Masks everything but the k top entries as -infinity (1e10).
Used to mask logits such that e^-infinity -> 0 won't contribute to the
sum of the denominator.
"""
if k == 0:
return logits
else:
values = torch.topk(logits, k)[0]
batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)
def get_topic_keywords(meta):
# TODO: temperary function
keywords_up = []
keywords_down = []
if meta[1]=='Weight management':
keywords_up += [6551, 4483, 2057, 9799, 4425, 4461, 4255, 5517]
keywords_down += [46040, 21856, 2526, 13230, 7523, 15220]
if meta[1]=='Smoking cessation':
keywords_up += [46040, 21856, 2526, 13230, 7523, 15220]
keywords_down += [6551, 4483, 2057, 9799, 4425, 4461, 4255, 5517]
return keywords_up, keywords_down
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_sequence(model, length, context, num_samples=1, temperature=1,
top_k=0, top_p=0.0, device='cuda', attention_mask=None):
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0).repeat(num_samples, 1)
generated = context
prev = context
past = None
attention_size = attention_mask.shape[-1]
output_attention_mask = torch.tril(torch.ones(512, 512, dtype=attention_mask.dtype))
output_attention_mask = output_attention_mask.view(1,1,*output_attention_mask.shape)
output_attention_mask[:,:,:attention_size,:attention_size] = attention_mask
with torch.no_grad():
for i in trange(length):
# inputs = {'input_ids': generated, 'past': None, 'key_word': key_word, 'use_keyword':use_keyword}
inputs = {'input_ids': generated, 'past': None, 'attention_mask':output_attention_mask[:,:,:current_length,:current_length]}
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
logits, past = model(**inputs)
next_token_logits = logits[0, -1, :] / (temperature if temperature>0 else 1.)
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
# if top_k > 0 or top_p > 0.0: # greedy, top_p, top_k
if temperature == 0:
next_token = torch.argmax(filtered_logits, dim=-1).unsqueeze(-1)
else: # temperature
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
while (i == 0) and (next_token[0] == 50256):
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
prev = next_token.unsqueeze(0)
if next_token[0] in [50256]:
break
return generated
def load_model_data(args):
# === prepare data and model
# ====== Load GPT2 model ========
model_dir = '../models/'+args.model_dir
model = GPT2LMHeadModel.from_pretrained(model_dir)
if USE_CUDA:
model.cuda()
tokenizer = GPT2Tokenizer.from_pretrained(model_dir)
return model, tokenizer
def run_model(args, model, tokenizer, test_loader):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
if args.length == -1:
args.length = model.config.n_ctx // 2
elif args.length > model.config.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % model.config.n_ctx)
hyp = []
ref = []
context = []
f = open('../result/'+args.output_dir+'.txt','w')
f_ref = open('../result/reference_'+args.output_dir+'.txt','w')
for i,sample in enumerate(test_loader):
# if args.cross_attention:
# x, type_x, pos_x, lm_x, x_len, meta, keyword_x = sample
# else:
# x, type_x, pos_x, lm_x, x_len, meta = sample
# keyword_x = None
x, type_x, pos_x, lm_x, x_len, attention_mask = sample
input_len = x_len[0] # The number of tokens of the context utterances
context_tokens = x[0][:input_len+1] # at evaluation stage, the input is without the ground truth
generated = 0
for i in range(args.nsamples // args.batch_size):
decode_length = int(len(context_tokens))
# if args.augment:
# decode_length = int(0.5 * (5/6) * len(context_tokens))
out = sample_sequence(
model=model,length=decode_length,
context=context_tokens,
temperature=args.temperature, top_k=args.top_k, top_p=args.top_p,
device=device, attention_mask = attention_mask
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
)
out = out[:, len(context_tokens):-1].tolist() # the generated result,get rid of eos
ref.append(tokenizer.decode(x[0].tolist()[len(context_tokens):-1]))
f_ref.write(tokenizer.decode(x[0].tolist()[len(context_tokens):-1]))
f_ref.write('\n')
hyp.append(tokenizer.decode(out[0]))
f.write(tokenizer.decode(out[0]))
f.write('\n')
context.append(tokenizer.decode(x[0].tolist()[:len(context_tokens)]))
f.close()
f_ref.close()
return hyp, ref, context
def calculate_metric(hyp, ref, context, effective_length=1024):
# ===== Calculate rouge ========
with open('../result/rouge.txt','a') as f_result:
rouge = Rouge()
print(len(hyp))
print(len(ref))
hyp, ref = zip(*[(x,y) for x,y in zip(hyp, ref) if len(x)>3 and len(y)>3])
print(len(hyp))
hyp = [x[:effective_length] for x in hyp]
ref = [x[:effective_length] for x in ref]
scores = rouge.get_scores(hyp, ref,avg=True)
print("ROUGE",scores)
import time
f_result.write(time.asctime()+'\n')
f_result.write(args.model_dir+ '\t' + str(effective_length) +'\n')
f_result.write(str(scores))
f_result.write('\n')
# == dump output====
print("#ref{} #hyp{}".format(len(ref),len(hyp)))
with open("../data_processed/output_" + args.model_dir+'p{}k{}'.format(args.top_p,args.top_k),'wb') as f_output:
pickle.dump(zip(hyp,ref,context), f_output)
# # ====== Calculate Meteor =========
# meteor_sum = 0
# for i in range(min(len(ref),len(hyp))):
# meteor_sum += meteor_score([ref[i]],hyp[i])
# meteor_sum/=min(len(ref),len(hyp))
# print(meteor_sum)
def rouge_rank(hyp, ref, context):
rouge = Rouge()
# import pdb;pdb.set_trace()
hyp, ref = zip(*[(x,y) for x,y in zip(hyp, ref) if len(x)>3 and len(y)>3])
scores = rouge.get_scores(hyp, ref,avg=False) # type: list
scores_content = zip(scores, hyp, ref, context, range(len(hyp)))
scores_content = sorted(scores_content, key=lambda x:x[0]['rouge-1']['f'], reverse=True)
return scores_content
if __name__ == '__main__':
USE_CUDA = torch.cuda.is_available()
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default='345M_Alex', help='pretrained model name or path to local checkpoint')
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--nsamples", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=-1)
parser.add_argument("--length", type=int, default=64)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=0)
parser.add_argument("--top_p", type=float, default=0)
parser.add_argument('--output_dir',type=str,default='generate', help="The name of the output file.")
parser.add_argument('--modified_decoding', action='store_true')
parser.add_argument('--augment', action='store_true')
parser.add_argument('--special_input',type=str)
parser.add_argument('--keyword', action='store_true')
parser.add_argument('--kbert', action='store_true')
parser.add_argument('--cross_attention', action='store_true')
parser.add_argument('--num_turns', type=int, default=5)
args = parser.parse_args()
if args.batch_size == -1:
args.batch_size = 1
assert args.nsamples % args.batch_size == 0
print(args)
# Setup the random seeds.
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.manual_seed(args.seed)
model, tokenizer = load_model_data(args)
split_size = {'train': 0.90, 'test': 0.05, 'val': 0.05}
data_loader, test_loader, val_loader = get_data(args, split_size=split_size, tokenizer=tokenizer)
# model, tokenizer, test_loader = load_model_data(args) # TODO: this is for old get_data
# import pdb;pdb.set_trace()
hyp, ref, context = run_model(args, model, tokenizer, test_loader)
sample_ranked = rouge_rank(hyp, ref, context)
with open("../data_processed/rouge_rank_" + args.model_dir,'wb') as f:
pickle.dump(sample_ranked, f)
calculate_metric(hyp, ref, context)
# calculate_metric(hyp, ref, context, 5)