Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fast-rcnn
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
maxmzkr
fast-rcnn
Commits
d2793d66
Commit
d2793d66
authored
9 years ago
by
Ross Girshick
Browse files
Options
Downloads
Patches
Plain Diff
add feature scaling used in slow R-CNN
parent
a32acb81
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tools/train_svms.py
+59
-23
59 additions, 23 deletions
tools/train_svms.py
with
59 additions
and
23 deletions
tools/train_svms.py
+
59
−
23
View file @
d2793d66
...
...
@@ -16,21 +16,54 @@ import caffe
import
argparse
import
pprint
import
numpy
as
np
import
numpy.random
as
npr
import
cv2
from
sklearn
import
svm
import
os
,
sys
class
SVMTrainer
(
object
):
"""
Trains post-hoc detection SVMs for all classes using the algorithm
and hyper-parameters of traditional R-CNN.
"""
def
__init__
(
self
,
net
,
imdb
):
self
.
imdb
=
imdb
self
.
net
=
net
dim
=
net
.
params
[
'
cls_score
'
][
0
].
data
.
shape
[
1
]
print
(
'
Feature dim: {}
'
.
format
(
dim
))
self
.
trainers
=
[
SVMClassTrainer
(
cls
,
dim
)
for
cls
in
imdb
.
classes
]
self
.
layer
=
'
fc7
'
self
.
hard_thresh
=
-
1.0001
self
.
neg_iou_thresh
=
0.3
dim
=
net
.
params
[
'
cls_score
'
][
0
].
data
.
shape
[
1
]
scale
=
self
.
_get_feature_scale
()
print
(
'
Feature dim: {}
'
.
format
(
dim
))
print
(
'
Feature scale: {:.3f}
'
.
format
(
scale
))
self
.
trainers
=
[
SVMClassTrainer
(
cls
,
dim
,
feature_scale
=
scale
)
for
cls
in
imdb
.
classes
]
def
_get_feature_scale
(
self
,
num_images
=
100
):
TARGET_NORM
=
20.0
# Magic value from traditional R-CNN
_t
=
Timer
()
roidb
=
self
.
imdb
.
roidb
total_norm
=
0.0
count
=
0.0
inds
=
npr
.
choice
(
xrange
(
self
.
imdb
.
num_images
),
size
=
num_images
,
replace
=
False
)
for
i_
,
i
in
enumerate
(
inds
):
im
=
cv2
.
imread
(
self
.
imdb
.
image_path_at
(
i
))
if
roidb
[
i
][
'
flipped
'
]:
im
=
im
[:,
::
-
1
,
:]
_t
.
tic
()
scores
,
boxes
=
im_detect
(
self
.
net
,
im
,
roidb
[
i
][
'
boxes
'
])
_t
.
toc
()
feat
=
self
.
net
.
blobs
[
self
.
layer
].
data
total_norm
+=
np
.
sqrt
((
feat
**
2
).
sum
(
axis
=
1
)).
sum
()
count
+=
feat
.
shape
[
0
]
print
(
'
{}/{}: avg feature norm: {:.3f}
'
.
format
(
i_
+
1
,
num_images
,
total_norm
/
count
))
return
TARGET_NORM
*
1.0
/
(
total_norm
/
count
)
def
_get_pos_counts
(
self
):
counts
=
np
.
zeros
((
len
(
self
.
imdb
.
classes
)),
dtype
=
np
.
int
)
roidb
=
self
.
imdb
.
roidb
...
...
@@ -74,6 +107,7 @@ class SVMTrainer(object):
.
format
(
i
+
1
,
len
(
roidb
),
_t
.
average_time
)
def
initialize_net
(
self
):
# Start all SVM parameters at zero
self
.
net
.
params
[
'
cls_score
'
][
0
].
data
[...]
=
0
self
.
net
.
params
[
'
cls_score
'
][
1
].
data
[...]
=
0
...
...
@@ -107,21 +141,23 @@ class SVMTrainer(object):
_t
.
toc
()
feat
=
self
.
net
.
blobs
[
self
.
layer
].
data
for
j
in
xrange
(
1
,
self
.
imdb
.
num_classes
):
hard_inds
=
np
.
where
((
scores
[:,
j
]
>
self
.
hard_thresh
)
&
(
roidb
[
i
][
'
gt_overlaps
'
][:,
j
].
toarray
().
ravel
()
<
self
.
neg_iou_thresh
))[
0
]
hard_inds
=
\
np
.
where
((
scores
[:,
j
]
>
self
.
hard_thresh
)
&
(
roidb
[
i
][
'
gt_overlaps
'
][:,
j
].
toarray
().
ravel
()
<
self
.
neg_iou_thresh
))[
0
]
if
len
(
hard_inds
)
>
0
:
hard_feat
=
feat
[
hard_inds
,
:].
copy
()
new_w_b
=
self
.
trainers
[
j
].
append_neg_and_retrain
(
feat
=
hard_feat
)
new_w_b
=
\
self
.
trainers
[
j
].
append_neg_and_retrain
(
feat
=
hard_feat
)
if
new_w_b
is
not
None
:
self
.
update_net
(
j
,
new_w_b
[
0
],
new_w_b
[
1
])
print
'
train_with_hard_negatives:
{:d}/{:d} {:.3f}s
'
\
.
format
(
i
+
1
,
len
(
roidb
),
_t
.
average_time
)
print
((
'
train_with_hard_negatives:
'
'
{:d}/{:d} {:.3f}s
'
)
.
format
(
i
+
1
,
len
(
roidb
),
_t
.
average_time
))
def
train
(
self
):
#
3)
Initialize SVMs using
# Initialize SVMs using
# a. w_i = fc8_w_i - fc8_w_0
# b. b_i = fc8_b_i - fc8_b_0
# c. Install SVMs into net
...
...
@@ -148,14 +184,11 @@ class SVMTrainer(object):
new_w_b
=
self
.
trainers
[
j
].
append_neg_and_retrain
(
force
=
True
)
self
.
update_net
(
j
,
new_w_b
[
0
],
new_w_b
[
1
])
# 7) Save net
class
SVMClassTrainer
(
object
):
def
__init__
(
self
,
cls
,
dim
,
C
=
0.001
,
B
=
10.0
,
pos_weight
=
2.0
):
"""
Manages post-hoc SVM training for a single object class.
"""
def
__init__
(
self
,
cls
,
dim
,
feature_scale
=
1.0
,
C
=
0.001
,
B
=
10.0
,
pos_weight
=
2.0
):
self
.
pos
=
np
.
zeros
((
0
,
dim
),
dtype
=
np
.
float32
)
self
.
neg
=
np
.
zeros
((
0
,
dim
),
dtype
=
np
.
float32
)
self
.
B
=
B
...
...
@@ -163,6 +196,7 @@ class SVMClassTrainer(object):
self
.
cls
=
cls
self
.
pos_weight
=
pos_weight
self
.
dim
=
dim
self
.
feature_scale
=
feature_scale
self
.
svm
=
svm
.
LinearSVC
(
C
=
C
,
class_weight
=
{
1
:
2
,
-
1
:
1
},
intercept_scaling
=
B
,
verbose
=
1
,
penalty
=
'
l2
'
,
loss
=
'
l1
'
,
...
...
@@ -188,7 +222,7 @@ class SVMClassTrainer(object):
num_neg
=
self
.
neg
.
shape
[
0
]
print
(
'
Cache holds {} pos examples and {} neg examples
'
.
format
(
num_pos
,
num_neg
))
X
=
np
.
vstack
((
self
.
pos
,
self
.
neg
))
X
=
np
.
vstack
((
self
.
pos
,
self
.
neg
))
*
self
.
feature_scale
y
=
np
.
hstack
((
np
.
ones
(
num_pos
),
-
np
.
ones
(
num_neg
)))
self
.
svm
.
fit
(
X
,
y
)
...
...
@@ -198,17 +232,19 @@ class SVMClassTrainer(object):
pos_scores
=
scores
[:
num_pos
]
neg_scores
=
scores
[
num_pos
:]
pos_loss
=
self
.
C
*
self
.
pos_weight
*
np
.
maximum
(
0
,
1
-
pos_scores
).
sum
()
pos_loss
=
(
self
.
C
*
self
.
pos_weight
*
np
.
maximum
(
0
,
1
-
pos_scores
).
sum
())
neg_loss
=
self
.
C
*
np
.
maximum
(
0
,
1
+
neg_scores
).
sum
()
reg_loss
=
0.5
*
np
.
dot
(
w
.
ravel
(),
w
.
ravel
())
+
0.5
*
b
**
2
tot_loss
=
pos_loss
+
neg_loss
+
reg_loss
self
.
loss_history
.
append
((
tot_loss
,
pos_loss
,
neg_loss
,
reg_loss
))
for
i
,
losses
in
enumerate
(
self
.
loss_history
):
print
(
'
{:d}: obj val: {:.3f} = {:.3f}
(pos) + {:.3f} (neg) + {:.3f} (reg)
'
.
format
(
i
,
*
losses
))
print
(
(
'
{:d}: obj val: {:.3f} = {:.3f}
'
'
(pos) + {:.3f} (neg) + {:.3f} (reg)
'
).
format
(
i
,
*
losses
))
return
(
w
,
b
),
pos_scores
,
neg_scores
return
((
w
*
self
.
feature_scale
,
b
*
self
.
feature_scale
),
pos_scores
,
neg_scores
)
def
append_neg_and_retrain
(
self
,
feat
=
None
,
force
=
False
):
if
feat
is
not
None
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment