Skip to content
Snippets Groups Projects
Commit 2ef01a9c authored by Ross Girshick's avatar Ross Girshick
Browse files

VGG16 name normalization

parent 3648893d
No related branches found
No related tags found
No related merge requests found
......@@ -21,13 +21,13 @@
Train a Fast R-CNN detector. For example, train a VGG 16 network on VOC 2007 trainval:
```
./tools/train_net.py --gpu 0 --solver models/VGG_16/solver.prototxt --weights /data/reference_caffe_nets/VGG_ILSVRC_16_layers.v2.caffemodel
./tools/train_net.py --gpu 0 --solver models/VGG16/solver.prototxt --weights data/imagenet_models/VGG16.v2.caffemodel
```
Test a Fast R-CNN detector. For example, test the VGG 16 network on VOC 2007 test:
```
./tools/test_net.py --gpu 1 --def models/VGG_16/test.prototxt --net snapshots/vgg16_fast_rcnn_iter_40000.caffemodel
./tools/test_net.py --gpu 1 --def models/VGG16/test.prototxt --net output/voc_2007_trainval/vgg16_fast_rcnn_iter_40000.caffemodel
```
Test output is written underneath `$FRCNN/output`.
......@@ -35,5 +35,5 @@ Test output is written underneath `$FRCNN/output`.
Compress a Fast R-CNN model using SVD on the fully-connected layers:
```
./tools/compress_model.py --def models/VGG_16/test.prototxt --def-svd models/VGG_16/compressed/test.prototxt --net snapshots/vgg16_fast_rcnn_iter_40000.caffemodel
./tools/compress_model.py --def models/VGG16/test.prototxt --def-svd models/VGG16/compressed/test.prototxt --net output/voc_2007_trainval/vgg16_fast_rcnn_iter_40000.caffemodel
```
......@@ -11,7 +11,7 @@ echo Logging output to "$LOG"
time ./tools/train_net.py --gpu $1 \
--solver models/VGG16/solver.prototxt \
--weights data/imagenet_models/VGG_ILSVRC_16_layers.v2.caffemodel \
--weights data/imagenet_models/VGG16.v2.caffemodel \
--imdb voc_2007_trainval
time ./tools/test_net.py --gpu $1 \
......
......@@ -11,7 +11,7 @@ echo Logging output to "$LOG"
time ./tools/train_net.py --gpu $1 \
--solver models/VGG16/no_bbox_reg/solver.prototxt \
--weights data/imagenet_models/VGG_ILSVRC_16_layers.v2.caffemodel \
--weights data/imagenet_models/VGG16.v2.caffemodel \
--imdb voc_2007_trainval \
--cfg experiments/cfgs/no_bbox_reg.yml
......
......@@ -106,11 +106,11 @@ __C.TEST.BBOX_REG = True
# some boxes that are distinct in image space to become identical in feature
# coordinates. If DEDUP_BOXES > 0, then DEDUP_BOXES is used as the scale factor
# for identifying duplicate boxes.
# 1/16 is correct for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG_16
# 1/16 is correct for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG16
__C.DEDUP_BOXES = 1./16.
# Pixel mean values (BGR order) as a (1, 1, 3) array
# These are the values originally used for training VGG_16
# These are the values originally used for training VGG16
__C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]])
# For reproducibility
......
train_net: "models/VGG_16/fc_only/train.prototxt"
train_net: "models/VGG16/fc_only/train.prototxt"
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
......
train_net: "models/VGG_16/no_bbox_reg/train.prototxt"
train_net: "models/VGG16/no_bbox_reg/train.prototxt"
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
......
train_net: "models/VGG_16/piecewise/train.prototxt"
train_net: "models/VGG16/piecewise/train.prototxt"
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
......
train_net: "models/VGG_16/train.prototxt"
train_net: "models/VGG16/train.prototxt"
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
......
......@@ -62,11 +62,11 @@ def compress_weights(W, l):
def main():
args = parse_args()
# prototxt = 'models/VGG_16/test.prototxt'
# prototxt = 'models/VGG16/test.prototxt'
# caffemodel = 'snapshots/vgg16_fast_rcnn_iter_40000.caffemodel'
net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST)
# prototxt_svd = 'models/VGG_16/svd/test_fc6_fc7.prototxt'
# prototxt_svd = 'models/VGG16/svd/test_fc6_fc7.prototxt'
# caffemodel = 'snapshots/vgg16_fast_rcnn_iter_40000.caffemodel'
net_svd = caffe.Net(args.prototxt_svd, args.caffemodel, caffe.TEST)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment