Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fast-rcnn
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
maxmzkr
fast-rcnn
Commits
209643b4
Commit
209643b4
authored
9 years ago
by
Ross Girshick
Browse files
Options
Downloads
Patches
Plain Diff
tool for training SVMs (old skool)
parent
0c624c25
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/svm.yml
+3
-0
3 additions, 0 deletions
examples/svm.yml
tools/extra/train_svms.py
+299
-0
299 additions, 0 deletions
tools/extra/train_svms.py
with
302 additions
and
0 deletions
examples/svm.yml
0 → 100644
+
3
−
0
View file @
209643b4
EXP_DIR
:
svm
TEST
:
BINARY
:
True
This diff is collapsed.
Click to expand it.
tools/extra/train_svms.py
0 → 100755
+
299
−
0
View file @
209643b4
#!/usr/bin/env python
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
import
sys
import
os
sys
.
path
.
insert
(
0
,
os
.
path
.
abspath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'
..
'
,
'
..
'
,
'
src
'
)))
from
fast_rcnn_config
import
cfg
,
cfg_from_file
from
fast_rcnn_test
import
im_detect
import
fast_rcnn_train
from
datasets.factory
import
get_imdb
from
utils.timer
import
Timer
import
caffe
import
argparse
import
pprint
import
numpy
as
np
import
cv2
from
sklearn
import
svm
class
SVMTrainer
(
object
):
def
__init__
(
self
,
net
,
imdb
):
self
.
imdb
=
imdb
self
.
net
=
net
dim
=
net
.
params
[
'
cls_score
'
][
0
].
data
.
shape
[
1
]
print
(
'
Feature dim: {}
'
.
format
(
dim
))
self
.
trainers
=
[
SVMClassTrainer
(
cls
,
dim
)
for
cls
in
imdb
.
classes
]
self
.
layer
=
'
fc7
'
self
.
hard_thresh
=
-
1.0001
self
.
neg_iou_thresh
=
0.3
def
_get_pos_counts
(
self
):
counts
=
np
.
zeros
((
len
(
self
.
imdb
.
classes
)),
dtype
=
np
.
int
)
roidb
=
self
.
imdb
.
roidb
for
i
in
xrange
(
len
(
roidb
)):
for
j
in
xrange
(
1
,
self
.
imdb
.
num_classes
):
I
=
np
.
where
(
roidb
[
i
][
'
gt_classes
'
]
==
j
)[
0
]
counts
[
j
]
+=
len
(
I
)
for
j
in
xrange
(
1
,
self
.
imdb
.
num_classes
):
print
(
'
class {:s} has {:d} positives
'
.
format
(
self
.
imdb
.
classes
[
j
],
counts
[
j
]))
return
counts
def
get_pos_examples
(
self
):
counts
=
self
.
_get_pos_counts
()
for
i
in
xrange
(
len
(
counts
)):
self
.
trainers
[
i
].
alloc_pos
(
counts
[
i
])
_t
=
Timer
()
roidb
=
self
.
imdb
.
roidb
num_images
=
len
(
roidb
)
# num_images = 100
for
i
in
xrange
(
num_images
):
im
=
cv2
.
imread
(
self
.
imdb
.
image_path_at
(
i
))
gt_inds
=
np
.
where
(
roidb
[
i
][
'
gt_classes
'
]
>
0
)[
0
]
gt_boxes
=
roidb
[
i
][
'
boxes
'
][
gt_inds
]
_t
.
tic
()
scores
,
boxes
=
im_detect
(
self
.
net
,
im
,
gt_boxes
)
_t
.
toc
()
feat
=
self
.
net
.
blobs
[
self
.
layer
].
data
for
j
in
xrange
(
1
,
self
.
imdb
.
num_classes
):
cls_inds
=
np
.
where
(
roidb
[
i
][
'
gt_classes
'
][
gt_inds
]
==
j
)[
0
]
if
len
(
cls_inds
)
>
0
:
cls_feat
=
feat
[
cls_inds
,
:]
self
.
trainers
[
j
].
append_pos
(
cls_feat
)
print
'
get_pos_examples: {:d}/{:d} {:.3f}s
'
\
.
format
(
i
+
1
,
len
(
roidb
),
_t
.
average_time
)
def
initialize_net
(
self
):
self
.
net
.
params
[
'
cls_score
'
][
0
].
data
[...]
=
0
self
.
net
.
params
[
'
cls_score
'
][
1
].
data
[...]
=
0
# Initialize SVMs in a smart way. Not doing this because its such
# a good initialization that we might not learn something close to
# the SVM solution.
# # subtract background weights and biases for the foreground classes
# w_bg = self.net.params['cls_score'][0].data[0, :]
# b_bg = self.net.params['cls_score'][1].data[0]
# self.net.params['cls_score'][0].data[1:, :] -= w_bg
# self.net.params['cls_score'][1].data[1:] -= b_bg
# # set the background weights and biases to 0 (where they shall remain)
# self.net.params['cls_score'][0].data[0, :] = 0
# self.net.params['cls_score'][1].data[0] = 0
def
update_net
(
self
,
cls_ind
,
w
,
b
):
self
.
net
.
params
[
'
cls_score
'
][
0
].
data
[
cls_ind
,
:]
=
w
self
.
net
.
params
[
'
cls_score
'
][
1
].
data
[
cls_ind
]
=
b
def
train_with_hard_negatives
(
self
):
_t
=
Timer
()
roidb
=
self
.
imdb
.
roidb
num_images
=
len
(
roidb
)
# num_images = 100
for
i
in
xrange
(
num_images
):
im
=
cv2
.
imread
(
self
.
imdb
.
image_path_at
(
i
))
_t
.
tic
()
scores
,
boxes
=
im_detect
(
self
.
net
,
im
,
roidb
[
i
][
'
boxes
'
])
_t
.
toc
()
feat
=
self
.
net
.
blobs
[
self
.
layer
].
data
for
j
in
xrange
(
1
,
self
.
imdb
.
num_classes
):
hard_inds
=
np
.
where
((
scores
[:,
j
]
>
self
.
hard_thresh
)
&
(
roidb
[
i
][
'
gt_overlaps
'
][:,
j
].
toarray
().
ravel
()
<
self
.
neg_iou_thresh
))[
0
]
if
len
(
hard_inds
)
>
0
:
hard_feat
=
feat
[
hard_inds
,
:].
copy
()
new_w_b
=
self
.
trainers
[
j
].
append_neg_and_retrain
(
feat
=
hard_feat
)
if
new_w_b
is
not
None
:
self
.
update_net
(
j
,
new_w_b
[
0
],
new_w_b
[
1
])
print
'
train_with_hard_negatives: {:d}/{:d} {:.3f}s
'
\
.
format
(
i
+
1
,
len
(
roidb
),
_t
.
average_time
)
def
train
(
self
):
# 3) Initialize SVMs using
# a. w_i = fc8_w_i - fc8_w_0
# b. b_i = fc8_b_i - fc8_b_0
# c. Install SVMs into net
self
.
initialize_net
()
# Pass over roidb to count num positives for each class
# a. Pre-allocate arrays for positive feature vectors
# Pass over roidb, computing features for positives only
self
.
get_pos_examples
()
# Pass over roidb
# a. Compute cls_score with forward pass
# b. For each class
# i. Select hard negatives
# ii. Add them to cache
# c. For each class
# i. If SVM retrain criteria met, update SVM
# ii. Install new SVM into net
self
.
train_with_hard_negatives
()
# One final SVM retraining for each class
# Install SVMs into net
for
j
in
xrange
(
1
,
self
.
imdb
.
num_classes
):
new_w_b
=
self
.
trainers
[
j
].
append_neg_and_retrain
(
force
=
True
)
self
.
update_net
(
j
,
new_w_b
[
0
],
new_w_b
[
1
])
# 7) Save net
class
SVMClassTrainer
(
object
):
def
__init__
(
self
,
cls
,
dim
,
C
=
0.001
,
B
=
10.0
,
pos_weight
=
2.0
):
self
.
pos
=
np
.
zeros
((
0
,
dim
),
dtype
=
np
.
float32
)
self
.
neg
=
np
.
zeros
((
0
,
dim
),
dtype
=
np
.
float32
)
self
.
B
=
B
self
.
C
=
C
self
.
cls
=
cls
self
.
pos_weight
=
pos_weight
self
.
dim
=
dim
self
.
svm
=
svm
.
LinearSVC
(
C
=
C
,
class_weight
=
{
1
:
2
,
-
1
:
1
},
intercept_scaling
=
B
,
verbose
=
1
,
penalty
=
'
l2
'
,
loss
=
'
l1
'
,
random_state
=
cfg
.
RNG_SEED
,
dual
=
True
)
self
.
pos_cur
=
0
self
.
num_neg_added
=
0
self
.
retrain_limit
=
2000
self
.
evict_thresh
=
-
1.1
self
.
loss_history
=
[]
def
alloc_pos
(
self
,
count
):
self
.
pos_cur
=
0
self
.
pos
=
np
.
zeros
((
count
,
self
.
dim
),
dtype
=
np
.
float32
)
def
append_pos
(
self
,
feat
):
num
=
feat
.
shape
[
0
]
self
.
pos
[
self
.
pos_cur
:
self
.
pos_cur
+
num
,
:]
=
feat
self
.
pos_cur
+=
num
def
train
(
self
):
print
(
'
>>> Updating {} detector <<<
'
.
format
(
self
.
cls
))
num_pos
=
self
.
pos
.
shape
[
0
]
num_neg
=
self
.
neg
.
shape
[
0
]
print
(
'
Cache holds {} pos examples and {} neg examples
'
.
format
(
num_pos
,
num_neg
))
X
=
np
.
vstack
((
self
.
pos
,
self
.
neg
))
y
=
np
.
hstack
((
np
.
ones
(
num_pos
),
-
np
.
ones
(
num_neg
)))
self
.
svm
.
fit
(
X
,
y
)
w
=
self
.
svm
.
coef_
b
=
self
.
svm
.
intercept_
[
0
]
scores
=
self
.
svm
.
decision_function
(
X
)
pos_scores
=
scores
[:
num_pos
]
neg_scores
=
scores
[
num_pos
:]
pos_loss
=
self
.
C
*
self
.
pos_weight
*
np
.
maximum
(
0
,
1
-
pos_scores
).
sum
()
neg_loss
=
self
.
C
*
np
.
maximum
(
0
,
1
+
neg_scores
).
sum
()
reg_loss
=
0.5
*
np
.
dot
(
w
.
ravel
(),
w
.
ravel
())
+
0.5
*
b
**
2
tot_loss
=
pos_loss
+
neg_loss
+
reg_loss
self
.
loss_history
.
append
((
tot_loss
,
pos_loss
,
neg_loss
,
reg_loss
))
for
i
,
losses
in
enumerate
(
self
.
loss_history
):
print
(
'
{:d}: obj val: {:.3f} = {:.3f} (pos) + {:.3f} (neg) + {:.3f} (reg)
'
.
format
(
i
,
*
losses
))
return
(
w
,
b
),
pos_scores
,
neg_scores
def
append_neg_and_retrain
(
self
,
feat
=
None
,
force
=
False
):
if
feat
is
not
None
:
num
=
feat
.
shape
[
0
]
self
.
neg
=
np
.
vstack
((
self
.
neg
,
feat
))
self
.
num_neg_added
+=
num
if
self
.
num_neg_added
>
self
.
retrain_limit
or
force
:
self
.
num_neg_added
=
0
new_w_b
,
pos_scores
,
neg_scores
=
self
.
train
()
# scores = np.dot(self.neg, new_w_b[0].T) + new_w_b[1]
# easy_inds = np.where(neg_scores < self.evict_thresh)[0]
not_easy_inds
=
np
.
where
(
neg_scores
>=
self
.
evict_thresh
)[
0
]
if
len
(
not_easy_inds
)
>
0
:
self
.
neg
=
self
.
neg
[
not_easy_inds
,
:]
# self.neg = np.delete(self.neg, easy_inds)
print
(
'
Pruning easy negatives
'
)
print
(
'
Cache holds {} pos examples and {} neg examples
'
.
format
(
self
.
pos
.
shape
[
0
],
self
.
neg
.
shape
[
0
]))
print
(
'
{} pos support vectors
'
.
format
((
pos_scores
<=
1
).
sum
()))
print
(
'
{} neg support vectors
'
.
format
((
neg_scores
>=
-
1
).
sum
()))
return
new_w_b
else
:
return
None
def
parse_args
():
"""
Parse input arguments
"""
parser
=
argparse
.
ArgumentParser
(
description
=
'
Train SVMs (old skool)
'
)
parser
.
add_argument
(
'
--gpu
'
,
dest
=
'
gpu_id
'
,
help
=
'
GPU device id to use [0]
'
,
default
=
0
,
type
=
int
)
parser
.
add_argument
(
'
--def
'
,
dest
=
'
prototxt
'
,
help
=
'
prototxt file defining the network
'
,
default
=
None
,
type
=
str
)
parser
.
add_argument
(
'
--net
'
,
dest
=
'
caffemodel
'
,
help
=
'
model to test
'
,
default
=
None
,
type
=
str
)
parser
.
add_argument
(
'
--cfg
'
,
dest
=
'
cfg_file
'
,
help
=
'
optional config file
'
,
default
=
None
,
type
=
str
)
parser
.
add_argument
(
'
--imdb
'
,
dest
=
'
imdb_name
'
,
help
=
'
dataset to train on
'
,
default
=
'
voc_2007_trainval
'
,
type
=
str
)
if
len
(
sys
.
argv
)
==
1
:
parser
.
print_help
()
sys
.
exit
(
1
)
args
=
parser
.
parse_args
()
return
args
if
__name__
==
'
__main__
'
:
# Must turn this off to prevent issues when digging into the net blobs to
# pull out features
cfg
.
DEDUP_BOXES
=
0
cfg
.
TEST
.
BINARY
=
True
args
=
parse_args
()
print
(
'
Called with args:
'
)
print
(
args
)
if
args
.
cfg_file
is
not
None
:
cfg_from_file
(
args
.
cfg_file
)
print
(
'
Using fast_rcnn_config:
'
)
pprint
.
pprint
(
cfg
)
# fix the random seed for reproducibility
np
.
random
.
seed
(
cfg
.
RNG_SEED
)
# set up caffe
caffe
.
set_mode_gpu
()
if
args
.
gpu_id
is
not
None
:
caffe
.
set_device
(
args
.
gpu_id
)
net
=
caffe
.
Net
(
args
.
prototxt
,
args
.
caffemodel
,
caffe
.
TEST
)
net
.
name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
args
.
caffemodel
))[
0
]
out
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
args
.
caffemodel
))[
0
]
+
'
_svm
'
out_dir
=
os
.
path
.
dirname
(
args
.
caffemodel
)
imdb_train
=
get_imdb
(
args
.
imdb_name
)
print
'
Loaded dataset `{:s}` for training
'
.
format
(
imdb_train
.
name
)
trainer
=
SVMTrainer
(
net
,
imdb_train
)
trainer
.
train
()
filename
=
'
{}/{}.caffemodel
'
.
format
(
out_dir
,
out
)
net
.
save
(
filename
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment