Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
4
403FinalProj
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
irisqlin
403FinalProj
Commits
03a4b8c8
Commit
03a4b8c8
authored
3 years ago
by
zhannah
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
eda8ea55
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
FinalProj.Rmd
+284
-0
284 additions, 0 deletions
FinalProj.Rmd
with
284 additions
and
0 deletions
FinalProj.Rmd
0 → 100644
+
284
−
0
View file @
03a4b8c8
---
title: "finalproj403"
author: "irisqlin"
date: "11/13/2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
## R Markdown
```{r}
library(stringr)
data <- read.csv("IYSdata.csv")
names(data)
# predictor data cleaning
data$X30.cig <- str_remove_all(data$X30.cig, " days")
data$X30.cig <- str_remove_all(data$X30.cig, " day")
data$X30.cig <- str_remove_all(data$X30.cig, " or more")
data$X30.cig[data$X30.cig == "1-2"] <- 1.5
data$X30.cig[data$X30.cig == "3-5"] <- 4
data$X30.cig[data$X30.cig == "6-9"] <- 7.5
data$X30.cig[data$X30.cig == "10-19"] <- 14.5
data$X30.cig[data$X30.cig == "20-29"] <- 24.5
data$X30.cig <- as.numeric(data$X30.cig)
mean(data$X30.cig)
data$X30drink <- str_remove_all(data$X30drink, " days")
data$X30drink <- str_remove_all(data$X30drink, " day")
data$X30drink <- str_remove_all(data$X30drink, " or more")
data$X30drink[data$X30drink == "1-2"] <- 1.5
data$X30drink[data$X30drink == "3-5"] <- 4
data$X30drink[data$X30drink == "6-9"] <- 7.5
data$X30drink[data$X30drink == "10-19"] <- 14.5
data$X30drink[data$X30drink == "20-29"] <- 24.5
data <- na.omit(data)
data$X30drink <- as.numeric(data$X30drink)
mean(data$X30drink)
data$X30marijuana <- str_remove_all(data$X30marijuana, " days")
data$X30marijuana <- str_remove_all(data$X30marijuana, " day")
data$X30marijuana <- str_remove_all(data$X30marijuana, " or more")
data$X30marijuana[data$X30marijuana == "1-2"] <- 1.5
data$X30marijuana[data$X30marijuana == "3-5"] <- 4
data$X30marijuana[data$X30marijuana == "6-9"] <- 7.5
data$X30marijuana[data$X30marijuana == "10-19"] <- 14.5
data$X30marijuana[data$X30marijuana == "20-29"] <- 24.5
data <- na.omit(data)
data$X30marijuana <- as.numeric(data$X30marijuana)
mean(data$X30marijuana)
```
```{r}
# response data cleaning
data$times.moved[data$times.moved == "None"] <- 0
data$times.moved[data$times.moved == "Once"] <- 1
data$times.moved[data$times.moved == "Twice"] <- 2
data$times.moved[data$times.moved == "Three times"] <- 3
data$times.moved[data$times.moved == "Four times or more"] <- 4
data <- na.omit(data)
mean(as.numeric(data$times.moved))
data$times.moved <- as.numeric(data$times.moved)
data$pride[data$pride == "Strongly agree"] <- 4
data$pride[data$pride == "Agree"] <- 3
data$pride[data$pride == "Disagree"] <- 2
data$pride[data$pride == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$pride))
data$pride <- as.numeric(data$pride)
data$truth[data$truth == "Strongly agree"] <- 4
data$truth[data$truth == "Agree"] <- 3
data$truth[data$truth == "Disagree"] <- 2
data$truth[data$truth == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$truth))
data$truth <- as.numeric(data$truth)
data$responsibility[data$responsibility == "Strongly agree"] <- 4
data$responsibility[data$responsibility == "Agree"] <- 3
data$responsibility[data$responsibility == "Disagree"] <- 2
data$responsibility[data$responsibility == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$responsibility))
data$responsibility <- as.numeric(data$responsibility)
data$friends[data$friends == "Strongly agree"] <- 4
data$friends[data$friends == "Agree"] <- 3
data$friends[data$friends == "Disagree"] <- 2
data$friends[data$friends == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$friends))
data$friends <- as.numeric(data$friends)
data$fix.problems[data$fix.problems == "Strongly agree"] <- 4
data$fix.problems[data$fix.problems == "Agree"] <- 3
data$fix.problems[data$fix.problems == "Disagree"] <- 2
data$fix.problems[data$fix.problems == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$fix.problems))
data$fix.problems <- as.numeric(data$fix.problems)
data$decision[data$decision == "Strongly agree"] <- 4
data$decision[data$decision == "Agree"] <- 3
data$decision[data$decision == "Disagree"] <- 2
data$decision[data$decision == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$decision))
data$decision <- as.numeric(data$decision)
data$excite[data$excite == "Strongly agree"] <- 4
data$excite[data$excite == "Agree"] <- 3
data$excite[data$excite == "Disagree"] <- 2
data$excite[data$excite == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$excite))
data$excite <- as.numeric(data$excite)
data$hard.work[data$hard.work == "Strongly agree"] <- 4
data$hard.work[data$hard.work == "Agree"] <- 3
data$hard.work[data$hard.work == "Disagree"] <- 2
data$hard.work[data$hard.work == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$hard.work))
data$hard.work <- as.numeric(data$hard.work)
data$safe[data$safe == "Strongly agree"] <- 4
data$safe[data$safe == "Agree"] <- 3
data$safe[data$safe == "Disagree"] <- 2
data$safe[data$safe == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$safe))
data$safe<- as.numeric(data$safe)
data$best.school[data$best.school == "Strongly agree"] <- 4
data$best.school[data$best.school == "Agree"] <- 3
data$best.school[data$best.school == "Disagree"] <- 2
data$best.school[data$best.school == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$best.school))
data$best.school <- as.numeric(data$best.school)
data$talk.adult[data$talk.adult == "Strongly agree"] <- 4
data$talk.adult[data$talk.adult == "Agree"] <- 3
data$talk.adult[data$talk.adult == "Disagree"] <- 2
data$talk.adult[data$talk.adult == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$talk.adult))
data$talk.adult <- as.numeric(data$talk.adult)
data$grades[data$grades == "Excellent"] <- 5
data$grades[data$grades == "Above average"] <- 4
data$grades[data$grades == "Average"] <- 3
data$grades[data$grades == "Below average"] <- 2
data$grades[data$grades == "Failing"] <- 1
data <- na.omit(data)
mean(as.numeric(data$grades))
data$grades <- as.numeric(data$grades)
data$Wpdrink[data$Wpdrink == "Very wrong"] <- 4
data$Wpdrink[data$Wpdrink == "Wrong"] <- 3
data$Wpdrink[data$Wpdrink == "Dont know"] <- 2.5
data$Wpdrink[data$Wpdrink == "A little wrong"] <- 2
data$Wpdrink[data$Wpdrink == "Not wrong at all"] <- 1
data <- na.omit(data)
mean(as.numeric(data$Wpdrink))
data$Wpdrink <- as.numeric(data$Wpdrink)
data$N.safe[data$N.safe == "Strongly agree"] <- 4
data$N.safe[data$N.safe == "Agree"] <- 3
data$N.safe[data$N.safe == "Disagree"] <- 2
data$N.safe[data$N.safe == "Strongly disagree"] <- 1
data <- na.omit(data)
mean(as.numeric(data$N.safe))
data$N.safe <- as.numeric(data$N.safe)
```
```{r}
# response data exploration
# hist(as.numeric(data$X30.5drinks))
hist(as.numeric(data$X30.cig))
hist(as.numeric(data$X30drink))
hist(as.numeric(data$X30marijuana))
summary(data)
# TODO: as numeric all the predictor variables
round(cor(data[, -c(1, 2, 3, 4, 6)], 3))
```
## Drinks Model(s)
```{r}
# making models
drinks_threshold <- mean(data$X30drink)
data$drinks_var <- ifelse(data$X30drink >= drinks_threshold, 1, 0)
# total model
drinks_total_mod <- glm(drinks_var ~ pride + truth + responsibility + friends + fix.problems + decision + excite + hard.work + safe + best.school + talk.adult +grades + Wpdrink + N.safe, data = data, family = "binomial")
summary(fiveDrinks_mod)
# dropped p > 0.1
drinks_mod_1 <- glm(drinks_var ~ truth + decision + excite + safe + best.school + grades + Wpdrink, data = data, family = "binomial")
summary(drinks_mod_1)
# dropped p > 0.1
drinks_mod_2 <- glm(drinks_var ~ truth + decision + excite + safe + best.school + Wpdrink, data = data, family = "binomial")
summary(drinks_mod_2)
#likelihood ratio test to test whether the observed difference in model fits is statistically significant
# source: https://www.listendata.com/2016/07/insignificant-levels-of-categorical-variable.html
anova(drinks_total_mod, drinks_mod_1, test="LRT")
anova(drinks_mod_1, drinks_mod_2, test = "LRT")
#Both of these are not significant, which means dropping the variables we did was not significant.
# TODO: idk what this does
anova(drinks_total_mod, drinks_mod_1, test="Chisq")
#drop in deviance test compares residual deivances from two models
# source: https://bookdown.org/roback/bookdown-BeyondMLR/ch-poissonreg.html#cs-philippines
# source: https://bookdown.org/roback/bookdown-BeyondMLR/ch-logreg.html
anova(drinks_mod_1, drinks_mod_2, test = "Chisq")
```
## Cig model
```{r}
# making models
cig_threshold <- mean(data$X30.cig)
data$cig_var <- ifelse(data$X30.cig >= cig_threshold, 1, 0)
# total model
cig_total_mod <- glm(cig_var ~ pride + truth + responsibility + friends + fix.problems + decision + excite + hard.work + safe + best.school + talk.adult + grades + Wpdrink + N.safe, data = data, family = "binomial")
summary(cig_total_mod)
# dropped p > 0.1
cig_mod_1 <- glm(cig_var ~ friends + fix.problems + decision + excite + hard.work + safe + best.school + grades + Wpdrink, data = data, family = "binomial")
summary(cig_mod_1)
# dropped p > 0.1
cig_mod_2 <- glm(cig_var ~ truth + decision + excite + best.school + Wpdrink, data = data, family = "binomial")
summary(cig_mod_2)
cig_mod_3 <- glm(cig_var ~ + decision + excite + best.school + Wpdrink, data = data, family = "binomial")
summary(cig_mod_3)
#likelihood ratio test to test whether the observed difference in model fits is statistically significant
# source: https://www.listendata.com/2016/07/insignificant-levels-of-categorical-variable.html
anova(cig_total_mod, cig_mod_1, test="LRT")
anova(cig_mod_1, cig_mod_2, test = "LRT")
anova(cig_mod_2, cig_mod_3, test="LRT")
#Both of these are not significant, which means dropping the variables we did was not significant.
# TODO: idk what this does
anova(drinks_total_mod, drinks_mod_1, test="Chisq")
#drop in deviance test compares residual deivances from two models
# source: https://bookdown.org/roback/bookdown-BeyondMLR/ch-poissonreg.html#cs-philippines
# source: https://bookdown.org/roback/bookdown-BeyondMLR/ch-logreg.html
anova(drinks_mod_1, drinks_mod_2, test = "Chisq")
```
```{r}
# Extra code
fiveDrinks_mod_3 <- glm(fiveDrinks_var ~ Wpdrink + friends, data = data, family = "binomial")
#summary(fiveDrinks_mod_3)
fiveDrinks_mod_4 <- glm(fiveDrinks_var ~ Wpdrink, data = data, family = "binomial")
#summary(fiveDrinks_mod_4)
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment