Skip to content
Snippets Groups Projects
Unverified Commit c82a3685 authored by Aditya Prakash's avatar Aditya Prakash Committed by GitHub
Browse files

Update README.md

parent 8f3a9cce
No related branches found
No related tags found
No related merge requests found
# TransFuser
Official code release for CVPR 2021 paper "Multi-Modal Fusion Transformer for End-to-End Autonomous Driving"
![TransFuser](assets/transfuser.png)
This repository contains the code for the CVPR 2021 paper [Multi-Modal Fusion Transformer for End-to-End Autonomous Driving](http://www.cvlibs.net/publications/Prakash2021CVPR.pdf). If you find out code or paper useful, please cite
```bibtex
@inproceedings{Prakash2021CVPR,
author = {Prakash, Aditya and Chitta, Kashyap and Geiger, Andreas},
title = {Multi-Modal Fusion Transformer for End-to-End Autonomous Driving},
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2021}
}
```
## Setup
Install anaconda
```Shell
wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh
bash Anaconda3-2020.11-Linux-x86_64.sh
source ~/.profile
```
Clone the repo and build the environment
```Shell
git clone https://github.com/autonomousvision/transfuser
cd transfuser
conda create -n transfuser python=3.7
pip3 install -r requirements.txt
conda activate transfuser
```
Download and setup CARLA 0.9.10.1
```Shell
chmod +x setup_carla.sh
./setup_carla.sh
```
## Data Generation
The training data is generated using ```leaderboard/team_code/auto_pilot.py``` in 8 CARLA towns and 14 weather conditions. The routes and scenarios files to be used for data generation are provided at ```leaderboard/data```.
### Running CARLA Server
#### With Display
```Shell
./CarlaUE4.sh -world-port=<port> -opengl
```
#### Without Display
Without Docker:
```
SDL_VIDEODRIVER=offscreen SDL_HINT_CUDA_DEVICE=<gpu_id> ./CarlaUE4.sh -world-port=<port> -opengl
```
With Docker:
Instructions for setting up docker are available [here](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker). Pull the docker image of CARLA 0.9.10.1 ```docker pull carlasim/carla:0.9.10.1```.
Docker 18:
```
docker run -it --rm -p 2000-2002:2000-2002 --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=<gpu_id> carlasim/carla:0.9.10.1 ./CarlaUE4.sh -world-port=2000 -opengl
```
Docker 19:
```Shell
docker run -it --rm --net=host --gpus '"device=<gpu_id>"' carlasim/carla:0.9.10.1 ./CarlaUE4.sh -world-port=2000 -opengl
```
If the docker container doesn't start properly then add another environment variable ```-e SDL_AUDIODRIVER=dsp```.
### Run the Autopilot
Once the CARLA server is running, rollout the autopilot to start data generation.
```Shell
./leaderboard/scripts/run_evaluation.sh
```
The expert agent used for data generation is defined in ```leaderboard/team_code/auto_pilot.py```. Different variables which need to be set are specified in ```leaderboard/scripts/run_evaluation.sh```. The expert agent is based on the autopilot from [this codebase](https://github.com/bradyz/2020_CARLA_challenge).
## Training
The training code and pretrained models for different models used in our paper are provided below.
- [CILRS](cilrs)
- [LBC](https://github.com/bradyz/2020_CARLA_challenge)
- [AIM](aim)
- [Late Fusion](late_fusion)
- [Geometric Fusion](geometric_fusion)
- [TransFuser](transfuser)
## Evaluation
Spin up a CARLA server (described above) and run the required agent. The adequate routes and scenarios files are provided in ```leaderboard/data``` and the required variables need to be set in ```leaderboard/scripts/run_evaluation.sh```.
```Shell
./leaderboard/scripts/run_evaluation.sh
```
## Acknowledgements
This implementation uses code from several amazing repositories.
- [2020_CARLA_challenge](https://github.com/bradyz/2020_CARLA_challenge)
- [OATomobile](https://github.com/OATML/oatomobile)
- [CARLA Leaderboard](https://github.com/carla-simulator/leaderboard)
- [Scenario Runner](https://github.com/carla-simulator/scenario_runner)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment