Skip to content
Snippets Groups Projects
Commit ee646dda authored by Max New's avatar Max New
Browse files

begin Nbe for substitutions

parent f33047ef
No related branches found
No related tags found
No related merge requests found
module Syntax.Nbe where
open import Cubical.Foundations.Prelude
open import Cubical.Data.List
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Syntax.IntensionalTerms
open import Syntax.Types
private
variable
Δ Γ Θ Z Δ' Γ' Θ' Z' : Ctx
R S T U R' S' T' U' : Ty
γ γ' γ'' : Subst Δ Γ
δ δ' δ'' : Subst Θ Δ
θ θ' θ'' : Subst Z Θ
V V' V'' : Val Γ S
M M' M'' N N' : Comp Γ S
E E' E'' F F' : EvCtx Γ S T
-- Part 1: define a presheaf semantics of contexts, i.e. every context
-- gets interpreted as an product of the Value presheaves
ctx-sem : ∀ (Γ : Ctx) → (Ctx → Type (ℓ-suc ℓ-zero))
ctx-sem [] Δ = Unit*
ctx-sem (A ∷ Γ) Δ = ctx-sem Γ Δ × Val Δ A
_[_]sem : ctx-sem Γ Δ → Subst Θ Δ → ctx-sem Γ Θ
_[_]sem {Γ = []} tt* δ = tt*
_[_]sem {Γ = x ∷ Γ} (γ~ , v) δ = (γ~ [ δ ]sem) , (v [ δ ]v)
wk-ctx-sem : ctx-sem Γ Θ → ctx-sem Γ (R ∷ Θ)
wk-ctx-sem γ~ = γ~ [ wk ]sem
-- Part 2: prove the presheaf semantics is equivalent to the yoneda
-- embedding (i.e. prove Yoneda preserves cartesian structure)
reify : ctx-sem Γ Δ → Subst Δ Γ
reify {Γ = []} γ~ = !s
reify {Γ = x ∷ Γ} (γ~ , v) = reify γ~ ,s v
reflect : Subst Δ Γ → ctx-sem Γ Δ
reflect {Γ = []} γ = tt*
reflect {Γ = x ∷ Γ} γ = (reflect (wk ∘s γ)) , (var [ γ ]v)
reify<-reflect≡id : (γ : Subst Δ Γ) → reify (reflect γ) ≡ γ
reify<-reflect≡id {Γ = []} γ = sym []η
reify<-reflect≡id {Γ = x ∷ Γ} γ = sym (,sη ∙ cong₂ _,s_ (sym (reify<-reflect≡id (wk ∘s γ))) refl)
reflect<-reify≡id : (γ~ : ctx-sem Γ Δ) → reflect (reify γ~) ≡ γ~
reflect<-reify≡id {Γ = []} γ~ = refl
reflect<-reify≡id {Γ = x ∷ Γ} γ~ = ΣPathP (cong reflect wkβ ∙ reflect<-reify≡id (γ~ .fst) , varβ)
-- Part 3: give a semantics of terms as "polymorphic transformations"
-- These will all end up being natural but fortunately we don't need that.
subst-sem : Subst Δ Γ → ∀ {Θ} → ctx-sem Δ Θ → ctx-sem Γ Θ
val-sem : Val Γ R → ∀ {Θ} → ctx-sem Γ Θ → Val Θ R
comp-sem : Comp Γ R → ∀ {Θ} → ctx-sem Γ Θ → Comp Θ R
ev-sem : EvCtx Γ R S → ∀ {Θ} → ctx-sem Γ Θ → Comp Θ R → Comp Θ S
subst-sem ids x = x
subst-sem (γ ∘s δ) x = subst-sem γ (subst-sem δ x)
subst-sem !s = λ _ → tt*
subst-sem (γ ,s v) x = (subst-sem γ x) , (val-sem v x)
subst-sem wk = fst
-- these equations should essentially hold by refl
subst-sem ([]η i) = {!!}
subst-sem (∘IdL i) = {!!}
subst-sem (∘IdR i) = {!!}
subst-sem (∘Assoc i) = {!!}
subst-sem (isSetSubst γ γ₁ x y i i₁) = {!!}
subst-sem (wkβ i) = {!!}
subst-sem (,sη i) = {!!}
val-sem (V [ γ ]v) x = val-sem V (subst-sem γ x)
val-sem var x = x .snd
val-sem zro x = zro [ !s ]v
val-sem suc (_ , n) = suc [ !s ,s n ]v
val-sem (lda M[x]) x = lda (comp-sem M[x] ((x [ wk ]sem) , var))
val-sem injectN x = {!!}
val-sem (injectArr V) x = {!!}
val-sem (mapDyn V V₁) x = {!!}
-- don't bother proving these until you have to
val-sem (fun-η i) x = {!!}
val-sem (varβ i) x = {!!}
val-sem (substId i) x = {!!}
val-sem (substAssoc i) x = {!!}
val-sem (isSetVal V V₁ x₁ y i i₁) x = {!!}
comp-sem (E [ M ]∙) x = ev-sem E x (comp-sem M x)
comp-sem (M [ γ ]c) x = comp-sem M (subst-sem γ x)
comp-sem err x = err [ !s ]c
comp-sem ret (_ , v) = ret [ !s ,s v ]c
comp-sem app ((_ , f) , x) = app [ !s ,s f ,s x ]c
comp-sem (matchNat Mz Ms) (x , d) =
matchNat (comp-sem Mz x)
(comp-sem Ms ((x [ wk ]sem) , var))
[ ids ,s d ]c
comp-sem (matchDyn Mn Md) (x , d) =
matchDyn (comp-sem Mn ((x [ wk ]sem) , var))
(comp-sem Md ((x [ wk ]sem) , var))
[ ids ,s d ]c
comp-sem (tick M) x =
tick (comp-sem M x)
comp-sem (plugId i) x = {!!}
comp-sem (plugAssoc i) x = {!!}
comp-sem (substId i) x = {!!}
comp-sem (substAssoc i) x = {!!}
comp-sem (substPlugDist i) x = {!!}
comp-sem (strictness i) x = {!!}
comp-sem (ret-β i) x = {!!}
comp-sem (fun-β i) x = {!!}
comp-sem (matchNatβz M M₁ i) x = {!!}
comp-sem (matchNatβs M M₁ V i) x = {!!}
comp-sem (matchNatη i) x = {!!}
comp-sem (matchDynβn M M₁ V i) x = {!!}
comp-sem (matchDynβf M M₁ V i) x = {!!}
comp-sem (tick-strictness i) x = {!!}
comp-sem (isSetComp M M₁ x₁ y i i₁) x = {!!}
ev-sem ∙E x M = M
ev-sem (E ∘E E₁) x M = ev-sem E x (ev-sem E₁ x M)
ev-sem (E [ γ ]e) x M = ev-sem E (subst-sem γ x) M
ev-sem (bind K) x M = bind (comp-sem K ((x [ wk ]sem) , var)) [ M ]∙
ev-sem (∘IdL i) x M = {!!}
ev-sem (∘IdR i) x M = {!!}
ev-sem (∘Assoc i) x M = {!!}
ev-sem (substId i) x M = {!!}
ev-sem (substAssoc i) x M = {!!}
ev-sem (∙substDist i) x M = {!!}
ev-sem (∘substDist i) x M = {!!}
ev-sem (ret-η i) x M = {!!}
ev-sem (isSetEvCtx E E₁ x₁ y i i₁) x M = {!!}
-- Part 4: Show the semantics of terms is equivalent to the yoneda
-- embedding of terms UP TO the equivalence between ctx-sem and Subst.
subst-correct : ∀ (γ : Subst Δ Γ)(δ~ : ctx-sem Δ Θ) → γ ∘s (reify δ~) ≡ reify (subst-sem γ δ~)
val-correct : ∀ (V : Val Δ S)(δ~ : ctx-sem Δ Θ) → V [ reify δ~ ]v ≡ val-sem V δ~
comp-correct : ∀ (M : Comp Δ S)(δ~ : ctx-sem Δ Θ) → M [ reify δ~ ]c ≡ comp-sem M δ~
ev-correct : ∀ (E : EvCtx Δ S R)(δ~ : ctx-sem Δ Θ) → E [ reify δ~ ]e [ M ]∙ ≡ ev-sem E δ~ M
subst-correct ids δ~ = ∘IdL
subst-correct (γ ∘s γ') δ~ = sym ∘Assoc
∙ cong (γ ∘s_) (subst-correct γ' δ~ )
∙ subst-correct γ _
subst-correct !s δ~ = []η
-- This is the naturality of ,s we discussed
subst-correct (γ ,s x) δ~ = {!!}
subst-correct wk δ~ = wkβ
-- This all should follow by isSet stuff
subst-correct (∘IdL i) δ~ = {!!}
subst-correct (∘IdR i) δ~ = {!!}
subst-correct (∘Assoc i) δ~ = {!!}
subst-correct (isSetSubst γ γ₁ x y i i₁) δ~ = {!!}
subst-correct ([]η i) δ~ = {!!}
subst-correct (wkβ i) δ~ = {!!}
subst-correct (,sη i) δ~ = {!!}
val-correct V δ~ = {!!}
comp-correct M δ~ = {!!}
ev-correct E δ~ = {!!}
-- Part 5: Now we get out a kind of "normalization" proof
normalize-val : (V : Val Γ S) → Val Γ S
normalize-val V = val-sem V (reflect ids)
normalize-v-correct : ∀ (V : Val Γ S) → V ≡ normalize-val V
normalize-v-correct V = (sym substId ∙ cong (V [_]v) (sym (reify<-reflect≡id _))) ∙ val-correct V (reflect ids)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment