Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
df1a8c00
Commit
df1a8c00
authored
2 years ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Syntax of gradual CBV cast calculus
parent
28d8243f
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/GradualSTLC.agda
+142
-0
142 additions, 0 deletions
formalizations/guarded-cubical/GradualSTLC.agda
with
142 additions
and
0 deletions
formalizations/guarded-cubical/GradualSTLC.agda
0 → 100644
+
142
−
0
View file @
df1a8c00
{-# OPTIONS --cubical --rewriting --guarded #-}
module GradualSTLC where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
-- Types --
data Ty : Set where
nat : Ty
dyn : Ty
_=>_ : Ty -> Ty -> Ty
infixr 5 _=>_
data _⊑_ : Ty -> Ty -> Set where
dyn : dyn ⊑ dyn
_=>_ : {A A' B B' : Ty} ->
A ⊑ A' -> B ⊑ B' -> (A => B) ⊑ (A' => B')
nat : nat ⊑ nat
inj-nat : nat ⊑ dyn
inj-arrow : {A : Ty} ->
A ⊑ (dyn => dyn) -> A ⊑ dyn
-- inj-arrow : {A A' : Ty} ->
-- (A => A') ⊑ (dyn => dyn) -> (A => A') ⊑ dyn
-- Contexts --
data Ctx : Set where
· : Ctx
_::_ : Ctx -> Ty -> Ctx
infixr 5 _::_
-- "Contains" relation stating that a context Γ contains a type T
data _∋_ : Ctx -> Ty -> Set where
vz : ∀ {Γ S} -> Γ :: S ∋ S
vs : ∀ {Γ S T} (x : Γ ∋ T) -> (Γ :: S ∋ T)
infix 4 _∋_
-- Simply-typed terms, presented via their typing rules
data Tm : Ctx -> Ty -> Set where
var : ∀ {Γ T} -> Γ ∋ T -> Tm Γ T
lda : ∀ {Γ S T} -> (Tm (Γ :: S) T) -> Tm Γ (S => T)
app : ∀ {Γ S T} -> (Tm Γ (S => T)) -> (Tm Γ S) -> (Tm Γ T)
err : ∀ {Γ A} -> Tm Γ A
up : ∀ {Γ A B} -> A ⊑ B -> Tm Γ A -> Tm Γ B
dn : ∀ {Γ A B} -> A ⊑ B -> Tm Γ B -> Tm Γ A
-- infix 4 _▸_
-- ================================================================= --
-- Type of "proofs" --
ProofT = Ctx -> Ty -> Set
VarToProof : ProofT -> Set
VarToProof _◆_ = ∀ {Γ T} -> (Γ ∋ T) -> (Γ ◆ T)
-- The diamond is a function, and the underscores around it allow us to use it in infix
ProofToTm : ProofT -> Set
ProofToTm _◆_ = ∀ {Γ T} -> (Γ ◆ T) -> (Tm Γ T)
WeakeningMap : ProofT -> Set
WeakeningMap _◆_ = ∀ {Γ S T} -> (Γ ◆ T) -> ((Γ :: S) ◆ T)
-- Kits --
data Kit (◆ : ProofT) : Set where
kit : ∀ (vr : VarToProof ◆) (tm : ProofToTm ◆) (wk : WeakeningMap ◆) -> Kit ◆
-- Substitutions --
Subst : Ctx -> Ctx -> ProofT -> Set
Subst Δ Γ _◈_ = ∀ {T} -> (Γ ∋ T) -> (Δ ◈ T)
-- Lift function --
lft : {Δ Γ : Ctx} {S : Ty} {_◈_ : ProofT}
(K : Kit _◈_) (τ : Subst Δ Γ _◈_) {T : Ty} (h : (Γ :: S) ∋ T) -> (Δ :: S) ◈ T
lft (kit vr tm wk) τ vz = vr vz
lft (kit vr tm wk) τ (vs x) = wk (τ x)
-- Note that the type of lft can also be written as (Subst Δ Γ _◈_) -> (Subst (Δ ∷ S) (Γ ∷ S) _◈_)
-- Traversal function --
trav : {Δ Γ : Ctx} {T : Ty} {_◈_ : ProofT} (K : Kit _◈_)
(τ : Subst Δ Γ _◈_) (t : Tm Γ T) -> Tm Δ T
trav (kit vr tm wk) τ (var x) = tm (τ x)
trav K τ (lda t') = lda (trav K (lft K τ) t')
trav K τ (app f s) = app (trav K τ f) (trav K τ s)
trav K τ (up deriv t') = up deriv (trav K τ t')
trav K τ (dn deriv t') = dn deriv (trav K τ t')
trav K τ err = err
-- Renaming --
idContains : {Γ : Ctx} {T : Ty} (t : Γ ∋ T) -> Γ ∋ T
idContains t = t
varKit : Kit _∋_
varKit = kit idContains var vs
rename : {Γ Δ : Ctx} {T : Ty} (ρ : Subst Δ Γ _∋_) (t : Tm Γ T) -> Tm Δ T
rename ρ t = trav varKit ρ t
-- Substitution --
idTerm : {Γ : Ctx} {T : Ty} (t : Tm Γ T) -> Tm Γ T
idTerm t = t
weakenTerm : WeakeningMap Tm
weakenTerm = rename vs
termKit : Kit Tm
termKit = kit var idTerm weakenTerm
sub : (Δ Γ : Ctx) (σ : Subst Δ Γ Tm) (T : Ty) (t : Tm Γ T) -> Tm Δ T
sub Δ Γ σ T t = trav termKit σ t
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment