Skip to content
Snippets Groups Projects
Commit dd2fccf8 authored by Eric Giovannini's avatar Eric Giovannini
Browse files

"Product" of monotone relations

parent 5ade2283
Branches
No related tags found
No related merge requests found
......@@ -22,6 +22,7 @@ open import Cubical.Foundations.Univalence
open import Common.Common
open import Common.Poset.Convenience
open import Common.Poset.Constructions
open import Common.Poset.Monotone hiding (monotone)
open BinaryRelation
......@@ -257,11 +258,36 @@ CompUnitRight : {X Y : Poset ℓ ℓ} -> (R : MonRel X Y ℓ) ->
CompMonRel {!!} {!!} ≡ {!!}
CompUnitRight = {!!}
-- Composition of monotone relations is associative
CompAssoc : {!!}
CompAssoc = {!!}
-- Product of monotone relations
_×monrel_ : {X : Poset ℓX ℓ'X} {X' : Poset ℓX' ℓ'X'}
{Y : Poset ℓY ℓ'Y} {Y' : Poset ℓY' ℓ'Y'} ->
MonRel X X' ℓR ->
MonRel Y Y' ℓR' ->
MonRel (X ×p Y) (X' ×p Y') (ℓ-max ℓR ℓR')
(R ×monrel S) .R (x , y) (x' , y') = R.R x x' × S.R y y'
where module R = MonRel R
module S = MonRel S
(R ×monrel S) .is-prop-valued (x , y) (x' , y') =
isProp× (R.is-prop-valued x x') (S.is-prop-valued y y')
where module R = MonRel R
module S = MonRel S
(R ×monrel S) .is-antitone {x' = x'1 , y'1} {x = x'2 , y'2} {y = x , y}
(x'1≤x'2 , y'1≤y'2) (x'2Rx , y'2Sy) =
(R.is-antitone x'1≤x'2 x'2Rx) , (S.is-antitone y'1≤y'2 y'2Sy)
where module R = MonRel R
module S = MonRel S
(R ×monrel S) .is-monotone {x = x , y} {y = x'1 , y'1} {y' = x'2 , y'2}
(xRx'1 , ySy'1) (x'1≤x'2 , y'1≤y'2) =
(R.is-monotone xRx'1 x'1≤x'2) , S.is-monotone ySy'1 y'1≤y'2
where module R = MonRel R
module S = MonRel S
--
-- Monotone relation between function spaces
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment