Skip to content
Snippets Groups Projects
Commit da77a185 authored by Dan Licata's avatar Dan Licata
Browse files

editing

parent d2bb8e6a
No related branches found
No related tags found
No related merge requests found
......@@ -1559,13 +1559,35 @@ interpreted as value types in call-by-push-value.
\section{Theorems in Gradual Type Theory}
In this section, we derive equational and inequational properties of
Gradual Type Theory. In what follows, ``unique'' means up to $\equidyn$.
Gradual Type Theory.
\subsection{Basic structure of GTT}
In what follows, ``unique'' means up to term equidynamism $\equidyn$.
GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\subsection{Inclusion of CBPV}
\begin{lemma}[Intitial objects] \label{lem:initial}
Because the GTT term equidynamism relation includes the congruence and
$\beta\eta$ axioms of call-by-push-value, the types inherit the
universal properties they have there~\cite{cpbv}. We recall some
relevant definitions and facts:
\begin{definition}[Isomorphism] ~
\begin{enumerate}
\item We write $A \cong_v A'$ for a \emph{value isomorphism between
$A$ and $A'$}, which consists of two complex values $x : A \vdash V'
: A'$ and $x' : A' \vdash V : A$ such that $x : A \vdash V[V'/x']
\equidyn x : A$ and $x' : A' \vdash V'[V/x] \equidyn x' : A'$.
\item We write $\u B \cong_v \u B'$ for a \emph{computation
isomorphism between $\u B$ and $\u B'$}, which consists of two
complex stacls $\bullet : \u B \vdash S' : \u B'$ and $\bullet' : \u
B' \vdash S : \u B$ such that $\bullet : \u B \vdash S[S'/x']
\equidyn \bullet : \u B$ and $\bullet' : \u B' \vdash S'[S/\bullet]
\equidyn \bullet' : \u B'$.
\end{enumerate}
\end{definition}
\smallskip
\begin{lemma}[Intitial objects] ~ \label{lem:initial}
\begin{enumerate}
\item For all (value or computation) types $T$, there exists a unique
expression $x : 0 \vdash E : T$.
......@@ -1579,7 +1601,7 @@ GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\item $\u F 0$ is not provably \emph{strictly} initial among computation types.
\end{enumerate}
\end{lemma}
\begin{proof}
\begin{proof}~
\begin{enumerate}
\item Take $E$ to be $x : 0 \vdash \abort{x} : T$. Given any $E'$,
we have $E \equidyn E'$ by the $\eta$ principle for $0$.
......@@ -1626,7 +1648,7 @@ GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\end{enumerate}
\end{proof}
\begin{lemma}[Terminal objects] \label{lem:terminal}
\begin{lemma}[Terminal objects] ~ \label{lem:terminal}
\begin{enumerate}
\item For any computation type $\u B$, there exists a unique stack
$\bullet : \u B \vdash S : \top$.
......@@ -1638,7 +1660,7 @@ GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\item $\top$ is not a strict terminal object.
\end{enumerate}
\end{lemma}
\begin{proof}
\begin{proof} ~
\begin{enumerate}
\item Take $S = \{\}$. The $\eta$ rule for $\top$, $\bullet : \top
\vdash \bullet \equidyn \{\} : \top$, under the substitution of
......@@ -1672,10 +1694,12 @@ GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\subsection{Derived Cast Rules}
Some helpful derived rules:
The cast universal properties in Figure~\ref{fig:gtt-term-dyn-axioms}
imply a number of seemingly more general rules for reasoning about
casts, which will be helpful for the proofs below:
\begin{lemma}[Shifted Casts]
The following are derivable
The following are derivable:
\begin{mathpar}
\inferrule
{\Gamma \pipe \Delta \vdash M : \u F A' \and A \ltdyn A'}
......@@ -1785,10 +1809,12 @@ $\dncast{\u B}{\u B''}{\bullet''}\ltdyn {\bullet''} : \u B \ltdyn \u B''$,
which is true by downcast left.
\end{proof}
\subsection{Type-generic Cast Properties}
\subsection{Type-generic Properties of Casts}
The following results apply to casts in any types:
\begin{theorem}{Casts (de)composition} \label{thm:decomposition}
For any $A \ltdyn A' \ltdyn A''$ and $\u B \ltdyn \ltdyn \u B' \ltdyn \u B''$:
\begin{theorem}[Casts (de)composition] \label{thm:decomposition}
For any $A \ltdyn A' \ltdyn A''$ and $\u B \ltdyn \u B' \ltdyn \u B''$:
\begin{enumerate}
\item $x : A \vdash \upcast A A x \equidyn x : A$
\item $x : A \vdash \upcast A {A''}x \equidyn \upcast{A'}{A''}\upcast A{A'} x : A''$
......@@ -1799,7 +1825,7 @@ which is true by downcast left.
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{proof} ~
\begin{enumerate}
\item To show $x : A \vdash \upcast A A x \ltdyn x$, by upcast left, it
suffices to show $x : A \vdash x \ltdyn x$, which is true by the
......@@ -1853,7 +1879,7 @@ x : A \vdash \upcast{A}{\dynv}{x} \equidyn \upcast{A'}{\dynv}{\upcast{A}{A'}{x}}
\item $x : U \u B \vdash x \ltdyn \thunk{(\dncast{B}{B'}{(\force{(\upcast{U \u B}{U \u B'}{x})})})} : U \u B$
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{proof} ~
\begin{enumerate}
\item By $\eta$ for $F$ types, $\bullet' : \u F A' \vdash \bullet'
\equidyn \bindXtoYinZ{\bullet'}{x'}{\ret{x'}} : \u F A'$, so it
......@@ -1921,7 +1947,7 @@ x : A \vdash \upcast{A}{\dynv}{x} \equidyn \upcast{A'}{\dynv}{\upcast{A}{A'}{x}}
\end{proof}
In Figure~\ref{fig:gtt-term-dyn-axioms}, we asserted the retract axiom
for casts into the dynamic type. More generally, we have
for casts into the dynamic type. More generally:
\begin{theorem}{Retract Property for General Casts}
\begin{enumerate}
\item
......@@ -1984,39 +2010,42 @@ for casts into the dynamic type. More generally, we have
The specification of upcasts and downcasts by their right and left
$\ltdyn$ rules defines them \emph{uniquely} up to $\equidyn$.
%
In category-theoretic terms this says that the upcasts and downcasts
have a \emph{universal property}, and so we can show that something
else is equivalent to the upcast or downcast by showing that it has
the \emph{same} property.
In category-theoretic terms this says that ``being an upcast/downcast''
is a \emph{universal property}, and so we can show that something else
is equivalent to the upcast or downcast by showing that it has the
\emph{same} property.
%
\begin{theorem}{Specification for Casts is a Universal Property} \label{thm:casts-unique}
If $A \ltdyn A'$ and $x : A \vdash V_u[x] : A'$ is a value such that
the following judgments are provable:
\begin{theorem}[Specification for Casts is a Universal Property]
~ \label{thm:casts-unique}
\begin{enumerate}
\item
If $A \ltdyn A'$ and $x : A \vdash V[x] : A'$ is a value such that
\begin{mathpar}
\inferrule
{}
{x : A \ltdyn x' : A' \vdash V_u[x] \ltdyn x' : A'}
{x : A \ltdyn x' : A' \vdash V[x] \ltdyn x' : A'}
\inferrule
{}
{x_2 : A \ltdyn x : A \vdash x_2 \ltdyn V_u[x] : A \ltdyn A'}
{x_2 : A \ltdyn x : A \vdash x_2 \ltdyn V[x] : A \ltdyn A'}
\end{mathpar}
then $x : A \vdash V \equidyn x : A$.
then we can prove $x : A \vdash V_u[x] \equidyn x : A$.
Similarly, if $\u B \ltdyn \u B'$ and $\bullet : \u B' \vdash S_d :
\u B$ is a stack such that the following are provable:
\item
If $\u B \ltdyn \u B'$ and $\bullet : \u B' \vdash S :
\u B$ is a stack such that
\begin{mathpar}
\inferrule
{}
{\bullet \ltdyn \bullet : \u B' \vdash S_d \ltdyn \bullet : \u B \ltdyn \u B'}
{\bullet \ltdyn \bullet : \u B' \vdash S \ltdyn \bullet : \u B \ltdyn \u B'}
\inferrule
{}
{\bullet \ltdyn \bullet : \u B \ltdyn \u B' \vdash \bullet \ltdyn S_d : \u B}
{\bullet \ltdyn \bullet : \u B \ltdyn \u B' \vdash \bullet \ltdyn S : \u B}
\end{mathpar}
then we can prove $\bullet : \u B' \vdash S_d \equidyn \dncast{\u B}{\u B'}\bullet : \u B$
then $\bullet : \u B' \vdash S \equidyn \dncast{\u B}{\u B'}\bullet : \u B$
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{mathpar}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment