Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
da77a185
Commit
da77a185
authored
6 years ago
by
Dan Licata
Browse files
Options
Downloads
Patches
Plain Diff
editing
parent
d2bb8e6a
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
paper/gtt.tex
+60
-31
60 additions, 31 deletions
paper/gtt.tex
with
60 additions
and
31 deletions
paper/gtt.tex
+
60
−
31
View file @
da77a185
...
...
@@ -1559,13 +1559,35 @@ interpreted as value types in call-by-push-value.
\section
{
Theorems in Gradual Type Theory
}
In this section, we derive equational and inequational properties of
Gradual Type Theory.
In what follows, ``unique'' means up to
$
\equidyn
$
.
Gradual Type Theory.
\subsection
{
Basic structure of GTT
}
In what follows, ``unique'' means up to term equidynamism
$
\equidyn
$
.
GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\subsection
{
Inclusion of CBPV
}
\begin{lemma}
[Intitial objects]
\label
{
lem:initial
}
Because the GTT term equidynamism relation includes the congruence and
$
\beta\eta
$
axioms of call-by-push-value, the types inherit the
universal properties they have there~
\cite
{
cpbv
}
. We recall some
relevant definitions and facts:
\begin{definition}
[Isomorphism] ~
\begin{enumerate}
\item
We write
$
A
\cong
_
v A'
$
for a
\emph
{
value isomorphism between
$
A
$
and
$
A'
$}
, which consists of two complex values
$
x : A
\vdash
V'
: A'
$
and
$
x' : A'
\vdash
V : A
$
such that
$
x : A
\vdash
V
[
V'
/
x'
]
\equidyn
x : A
$
and
$
x' : A'
\vdash
V'
[
V
/
x
]
\equidyn
x' : A'
$
.
\item
We write
$
\u
B
\cong
_
v
\u
B'
$
for a
\emph
{
computation
isomorphism between
$
\u
B
$
and
$
\u
B'
$}
, which consists of two
complex stacls
$
\bullet
:
\u
B
\vdash
S' :
\u
B'
$
and
$
\bullet
' :
\u
B'
\vdash
S :
\u
B
$
such that
$
\bullet
:
\u
B
\vdash
S
[
S'
/
x'
]
\equidyn
\bullet
:
\u
B
$
and
$
\bullet
' :
\u
B'
\vdash
S'
[
S
/
\bullet
]
\equidyn
\bullet
' :
\u
B'
$
.
\end{enumerate}
\end{definition}
\smallskip
\begin{lemma}
[Intitial objects] ~
\label
{
lem:initial
}
\begin{enumerate}
\item
For all (value or computation) types
$
T
$
, there exists a unique
expression
$
x :
0
\vdash
E : T
$
.
...
...
@@ -1579,7 +1601,7 @@ GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\item
$
\u
F
0
$
is not provably
\emph
{
strictly
}
initial among computation types.
\end{enumerate}
\end{lemma}
\begin{proof}
\begin{proof}
~
\begin{enumerate}
\item
Take
$
E
$
to be
$
x :
0
\vdash
\abort
{
x
}
: T
$
. Given any
$
E'
$
,
we have
$
E
\equidyn
E'
$
by the
$
\eta
$
principle for
$
0
$
.
...
...
@@ -1626,7 +1648,7 @@ GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\end{enumerate}
\end{proof}
\begin{lemma}
[Terminal objects]
\label
{
lem:terminal
}
\begin{lemma}
[Terminal objects]
~
\label
{
lem:terminal
}
\begin{enumerate}
\item
For any computation type
$
\u
B
$
, there exists a unique stack
$
\bullet
:
\u
B
\vdash
S :
\top
$
.
...
...
@@ -1638,7 +1660,7 @@ GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\item
$
\top
$
is not a strict terminal object.
\end{enumerate}
\end{lemma}
\begin{proof}
\begin{proof}
~
\begin{enumerate}
\item
Take
$
S
=
\{\}
$
. The
$
\eta
$
rule for
$
\top
$
,
$
\bullet
:
\top
\vdash
\bullet
\equidyn
\{\}
:
\top
$
, under the substitution of
...
...
@@ -1672,10 +1694,12 @@ GTT inherits a lot of stuff from CPBV, for example [TODO: cite CPBV book]
\subsection
{
Derived Cast Rules
}
Some helpful derived rules:
The cast universal properties in Figure~
\ref
{
fig:gtt-term-dyn-axioms
}
imply a number of seemingly more general rules for reasoning about
casts, which will be helpful for the proofs below:
\begin{lemma}
[Shifted Casts]
The following are derivable
The following are derivable
:
\begin{mathpar}
\inferrule
{
\Gamma
\pipe
\Delta
\vdash
M :
\u
F A'
\and
A
\ltdyn
A'
}
...
...
@@ -1785,10 +1809,12 @@ $\dncast{\u B}{\u B''}{\bullet''}\ltdyn {\bullet''} : \u B \ltdyn \u B''$,
which is true by downcast left.
\end{proof}
\subsection
{
Type-generic Cast Properties
}
\subsection
{
Type-generic Properties of Casts
}
The following results apply to casts in any types:
\begin{theorem}
{
Casts (de)composition
}
\label
{
thm:decomposition
}
For any
$
A
\ltdyn
A'
\ltdyn
A''
$
and
$
\u
B
\ltdyn
\ltdyn
\u
B'
\ltdyn
\u
B''
$
:
\begin{theorem}
[
Casts (de)composition
]
\label
{
thm:decomposition
}
For any
$
A
\ltdyn
A'
\ltdyn
A''
$
and
$
\u
B
\ltdyn
\u
B'
\ltdyn
\u
B''
$
:
\begin{enumerate}
\item
$
x : A
\vdash
\upcast
A A x
\equidyn
x : A
$
\item
$
x : A
\vdash
\upcast
A
{
A''
}
x
\equidyn
\upcast
{
A'
}{
A''
}
\upcast
A
{
A'
}
x : A''
$
...
...
@@ -1799,7 +1825,7 @@ which is true by downcast left.
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{proof}
~
\begin{enumerate}
\item
To show
$
x : A
\vdash
\upcast
A A x
\ltdyn
x
$
, by upcast left, it
suffices to show
$
x : A
\vdash
x
\ltdyn
x
$
, which is true by the
...
...
@@ -1853,7 +1879,7 @@ x : A \vdash \upcast{A}{\dynv}{x} \equidyn \upcast{A'}{\dynv}{\upcast{A}{A'}{x}}
\item
$
x : U
\u
B
\vdash
x
\ltdyn
\thunk
{
(
\dncast
{
B
}{
B'
}{
(
\force
{
(
\upcast
{
U
\u
B
}{
U
\u
B'
}{
x
}
)
}
)
}
)
}
: U
\u
B
$
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{proof}
~
\begin{enumerate}
\item
By
$
\eta
$
for
$
F
$
types,
$
\bullet
' :
\u
F A'
\vdash
\bullet
'
\equidyn
\bindXtoYinZ
{
\bullet
'
}{
x'
}{
\ret
{
x'
}}
:
\u
F A'
$
, so it
...
...
@@ -1921,7 +1947,7 @@ x : A \vdash \upcast{A}{\dynv}{x} \equidyn \upcast{A'}{\dynv}{\upcast{A}{A'}{x}}
\end{proof}
In Figure~
\ref
{
fig:gtt-term-dyn-axioms
}
, we asserted the retract axiom
for casts into the dynamic type. More generally
, we have
for casts into the dynamic type. More generally
:
\begin{theorem}
{
Retract Property for General Casts
}
\begin{enumerate}
\item
...
...
@@ -1984,39 +2010,42 @@ for casts into the dynamic type. More generally, we have
The specification of upcasts and downcasts by their right and left
$
\ltdyn
$
rules defines them
\emph
{
uniquely
}
up to
$
\equidyn
$
.
%
In category-theoretic terms this says that
the
upcast
s and
downcast
s
have
a
\emph
{
universal property
}
, and so we can show that something
else
is equivalent to the upcast or downcast by showing that it has
the
\emph
{
same
}
property.
In category-theoretic terms this says that
``being an
upcast
/
downcast
''
is
a
\emph
{
universal property
}
, and so we can show that something
else
is equivalent to the upcast or downcast by showing that it has
the
\emph
{
same
}
property.
%
\begin{theorem}
{
Specification for Casts is a Universal Property
}
\label
{
thm:casts-unique
}
If
$
A
\ltdyn
A'
$
and
$
x : A
\vdash
V
_
u
[
x
]
: A'
$
is a value such that
the following judgments are provable:
\begin{theorem}
[Specification for Casts is a Universal Property]
~
\label
{
thm:casts-unique
}
\begin{enumerate}
\item
If
$
A
\ltdyn
A'
$
and
$
x : A
\vdash
V
[
x
]
: A'
$
is a value such that
\begin{mathpar}
\inferrule
{}
{
x : A
\ltdyn
x' : A'
\vdash
V
_
u
[x]
\ltdyn
x' : A'
}
{
x : A
\ltdyn
x' : A'
\vdash
V[x]
\ltdyn
x' : A'
}
\inferrule
{}
{
x
_
2 : A
\ltdyn
x : A
\vdash
x
_
2
\ltdyn
V
_
u
[x] : A
\ltdyn
A'
}
{
x
_
2 : A
\ltdyn
x : A
\vdash
x
_
2
\ltdyn
V[x] : A
\ltdyn
A'
}
\end{mathpar}
then
$
x : A
\vdash
V
\equidyn
x : A
$
.
then we can prove
$
x : A
\vdash
V
_
u
[
x
]
\equidyn
x : A
$
.
Similarly, if
$
\u
B
\ltdyn
\u
B'
$
and
$
\bullet
:
\u
B'
\vdash
S
_
d :
\u
B
$
is a stack such that the following are provable:
\item
If
$
\u
B
\ltdyn
\u
B'
$
and
$
\bullet
:
\u
B'
\vdash
S :
\u
B
$
is a stack such that
\begin{mathpar}
\inferrule
{}
{
\bullet
\ltdyn
\bullet
:
\u
B'
\vdash
S
_
d
\ltdyn
\bullet
:
\u
B
\ltdyn
\u
B'
}
{
\bullet
\ltdyn
\bullet
:
\u
B'
\vdash
S
\ltdyn
\bullet
:
\u
B
\ltdyn
\u
B'
}
\inferrule
{}
{
\bullet
\ltdyn
\bullet
:
\u
B
\ltdyn
\u
B'
\vdash
\bullet
\ltdyn
S
_
d
:
\u
B
}
{
\bullet
\ltdyn
\bullet
:
\u
B
\ltdyn
\u
B'
\vdash
\bullet
\ltdyn
S :
\u
B
}
\end{mathpar}
then we can prove
$
\bullet
:
\u
B'
\vdash
S
_
d
\equidyn
\dncast
{
\u
B
}{
\u
B'
}
\bullet
:
\u
B
$
then
$
\bullet
:
\u
B'
\vdash
S
\equidyn
\dncast
{
\u
B
}{
\u
B'
}
\bullet
:
\u
B
$
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{mathpar}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment