Skip to content
Snippets Groups Projects
Commit c24d5f44 authored by Eric Giovannini's avatar Eric Giovannini
Browse files
parents ebb1dc35 cdf3c339
No related branches found
No related tags found
No related merge requests found
......@@ -8,6 +8,11 @@ open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
open import Cubical.Categories.Adjoint
open import Cubical.Categories.Functor
open import Cubical.Categories.Instances.Functors
open import Cubical.Categories.Constructions.BinProduct
open import Cubical.Categories.Instances.Sets
variable
ℓ ℓ' : Level
......@@ -24,7 +29,21 @@ variable
; isSetHom = λ x y → λ p:x≡y q:x≡y i j t → Category.isSetHom (C t) (x t) (y t) (λ k → p:x≡y k t) ((λ k → q:x≡y k t)) i j
}
next-c : ∀ (C : Category ℓ ℓ') → Functor C (▸c (next C))
▹c : ∀ (C : Category ℓ ℓ') → Category ℓ ℓ'
▹c C = ▸c (next C)
▹F : ∀ {C D : Category ℓ ℓ'} → Functor C D → Functor (▹c C) (▹c D)
▹F F = record
{ F-ob = λ x t → F-ob (x t)
; F-hom = λ x t → F-hom (x t)
; F-id = λ i t → F-id i
; F-seq = λ f g i t → F-seq (f t) (g t) i
}
where module F = Functor F
open F
next-c : ∀ (C : Category ℓ ℓ') → Functor C (▹c C)
next-c C = record
{ F-ob = λ x t → x
; F-hom = λ z t → z
......@@ -41,3 +60,42 @@ record GuardedCat : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
θ-UMP : isRightAdjoint (next-c C)
-- Conjecture: Every GuardedCat has an initial object ⊥ = fix θ₀
PROF : (ℓ' : Level) → (C : Category ℓ ℓ') (D : Category ℓ ℓ') → Category (ℓ-max ℓ (ℓ-suc ℓ')) (ℓ-max ℓ ℓ')
PROF ℓ' C D = FUNCTOR ((C ^op) × D) (SET ℓ')
Profunctor : (C : Category ℓ ℓ') (D : Category ℓ ℓ') → Type (ℓ-max ℓ (ℓ-suc ℓ'))
Profunctor C D = Category.ob (PROF _ C D)
-- e : A → B
-- p : B → ▹ A
-- e a ~> b
-- iff (next a) ~> p b
-- defines e as a relative left adjoint
-- doesn't uniquely determine p
-- a▹ ~> p b
-- iff ▹ (λ t → e (a▹ t) ~> b)
-- iff (▹ e) a▹ ~> (next b)
-- defines p as a relative right adjoint
-- doesn't uniquely determine e
-- e seems more fundamental than p tbh...but which of these holds period?
-- e : A → B
-- p : B → Option (▹ A)
-- e a ~> b
-- iff some (next a) ~> p b
-- defines e as a relative left adjoint
-- doesn't uniquely determine p
-- a?▹ ~> p b
-- iff Option (▹ e) a▹ ~> (next b)
-- defines p as a relative right adjoint
-- doesn't uniquely determine e
-- ▹p : Profunctor C D → (Profunctor (▹ C) (▹ D))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment