Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
c0fdabca
Commit
c0fdabca
authored
6 years ago
by
Dan Licata
Browse files
Options
Downloads
Patches
Plain Diff
typeset definitions of casts
parent
c4dd1a22
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
paper/gtt.tex
+61
-27
61 additions, 27 deletions
paper/gtt.tex
with
61 additions
and
27 deletions
paper/gtt.tex
+
61
−
27
View file @
c0fdabca
...
...
@@ -1024,21 +1024,22 @@ TODO: do we actually know what would go wrong in that case?
\bigskip
\framebox
{
Error Universal Properties
}
\begin{mathpar}
\framebox
{
Error Universal Properties
}
\qquad
\inferrule
{
\Gamma
'
\mid
\cdot
\vdash
M' :
\u
B'
}
{
\Gamma
\ltdyn
\Gamma
'
\mid
\cdot
\vdash
\err
\ltdyn
M :
\u
B
\ltdyn
\u
B'
}
\qquad
\inferrule
{
\Gamma
\mid
x :
\u
B
\vdash
S :
\u
B'
}
{
\Gamma
\mid
\cdot
\vdash
S[
\err
_{
\u
B
}
]
\ltdyn
\err
_{
\u
{
B'
}}
:
\u
B'
}
\end{mathpar}
\bigskip
\framebox
{
Cast Success/Failure
}
\[
\framebox
{
Cast Success
/
Failure
}
\quad
\begin
{
array
}{
c
}
%% TODO prove these:
%% x : A \vdash \dncast{\u F A}{\u F A'}{(\ret{(\upcast{A}{A'}{x})})} \ltdyn \ret{x} : \u F A \\
...
...
@@ -1400,31 +1401,64 @@ $\eta$-expansion \emph{up to cast at smaller type}.
\begin{theorem}
{
Characterization of Casts
}
\begin{enumerate}
\item
[+]
$
\upcast
{
A
_
1
+
A
_
2
}{
A
_
1
'
+
A
_
2
'
}
\equidyn
\ldots
$
and
$
\dncast
{
\u
F
(
A
_
1
'
+
A
_
2
'
)
}{
\u
F
(
A
_
1
+
A
_
2
)
}
\equidyn
\ldots
$
\begin{small}
\[
\begin
{
array
}{
l
}
\upcast
{
A
_
1
+
A
_
2
}{
A
_
1
'
+
A
_
2
'
}{
s
}
\equidyn
\caseofXthenYelseZ
{
s
}{
x
_
1
.
\inl
{
(
\upcast
{
A
_
1
}{
A
_
1
'
}{
x
_
1
}
)
}}{
x
_
2
.
\inr
{
(
\upcast
{
A
_
2
}{
A
_
2
'
}{
x
_
2
}
)
}}
\\
\dncast
{
\u
F
(
A
_
1
'
+
A
_
2
'
)
}{
\u
F
(
A
_
1
+
A
_
2
)
}{
\bullet
}
\equidyn
\\
\bindXtoYinZ
{
\bullet
}{
(
s :
(
A
_
1
'
+
A
_
2
'
))
}{}
\\
\quad
{
\caseofXthenYelseZ
{
s
}
{
x
_
1
'.
\bindXtoYinZ
{
(
\dncast
{
\u
F A
_
1
}{
\u
F A
_
1
'
}{
(
\ret
{
x
_
1
'
}
)
}
)
}{
x
_
1
}{
\ret
{
(
\inl
{
x
_
1
}
)
}}}
{
x
_
2
'.
\bindXtoYinZ
{
(
\dncast
{
\u
F A
_
2
}{
\u
F A
_
2
'
}{
(
\ret
{
x
_
2
'
}
)
}
)
}{
x
_
2
}{
\ret
{
(
\inr
{
x
_
2
}
)
}}}}
\\
\\
\upcast
{
A
_
1
\times
A
_
2
}{
A
_
1
'
\times
A
_
2
'
}{
p
}
\equidyn
\pmpairWtoXYinZ
{
p
}{
x
_
1
}{
x
_
2
}{
(
\upcast
{
A
_
1
}{
A
_
1
'
}{
x
_
1
}
,
\upcast
{
A
_
2
}{
A
_
2
'
}{
x
_
2
}
)
}
\\
\begin
{
array
}{
l
}
\dncast
{
\u
F
(
A
_
1
'
\times
A
_
2
'
)
}{
\u
F
(
A
_
1
\times
A
_
2
)
}{
\bullet
}
\equidyn
\\
\qquad
\bindXtoYinZ
{
\bullet
}{
p'
}{
\pmpairWtoXYinZ
{
p'
}{
x
_
1
'
}{
x
_
2
'
}{
\bindXtoYinZ
{
\dncast
{
\u
F A
_
1
}{
\u
F A
_
1
'
}{
\ret
x
_
1
'
}}{
x
_
1
}{
\bindXtoYinZ
{
\dncast
{
\u
F A
_
2
}{
\u
F A
_
2
'
}{
\ret
x
_
2
'
}}{
x
_
2
}
{
\ret
(
x
_
1
,x
_
2
)
}}}}
\equidyn
\\
\qquad
\bindXtoYinZ
{
\bullet
}{
p'
}{
\pmpairWtoXYinZ
{
p'
}{
x
_
1
'
}{
x
_
2
'
}{
\bindXtoYinZ
{
\dncast
{
\u
F A
_
2
}{
\u
F A
_
2
'
}{
\ret
x
_
2
'
}}{
x
_
2
}{
\bindXtoYinZ
{
\dncast
{
\u
F A
_
1
}{
\u
F A
_
1
'
}{
\ret
x
_
1
'
}}{
x
_
1
}
{
\ret
(
x
_
1
,x
_
2
)
}}}}
\end
{
array
}
\\
\item
[$\times$]
$
\upcast
{
A
_
1
\times
A
_
2
}{
A
_
1
'
\times
A
_
2
'
}
\equidyn
\ldots
$
and
$
\dncast
{
\u
F
(
A
_
1
'
\times
A
_
2
'
)
}{
\u
F
(
A
_
1
\times
A
_
2
)
}
\equidyn
\ldots
$
(both orders)
\\
\dncast
{
\u
B
_
1
\with
\u
B
_
2
}{
\u
B
_
1
'
\with
\u
B
_
2
'
}{
\bullet
}
\equidyn
\pair
{
\dncast
{
\u
B
_
1
}{
\u
B
_
1
'
}{
\pi
\bullet
}}{
\dncast
{
\u
B
_
2
}{
\u
B
_
2
'
}{
\pi
'
\bullet
}}
\\
\begin
{
array
}{
l
}
\upcast
{
U
(
\u
B
_
1
\with
\u
B
_
2
)
}{
U
(
\u
B
_
1
'
\with
\u
B
_
2
'
)
}{
p
}
\equidyn\\
\thunk
{
\pair
{
\force
{
(
\upcast
{
U
\u
B
_
1
}{
U
\u
B
_
1
'
}{
(
\thunk
{
\pi
(
\force
{
p
}
)
}
)
}
)
}}{
\force
{
(
\upcast
{
U
\u
B
_
2
}{
U
\u
B
_
2
'
}{
(
\thunk
{
\pi
'
(
\force
{
p
}
)
}
)
}
)
}}}
\end
{
array
}
\\
\item
[$\with$]
$
\dncast
{
\u
B
_
1
\with
\u
B
_
2
}{
\u
B
_
1
'
\with
\u
B
_
2
'
}
\equidyn
\ldots
$
and
$
\upcast
{
U
(
\u
B
_
1
\with
\u
B
_
2
)
}{
U
(
\u
B
_
1
'
\with
\u
B
_
2
'
)
}
\equidyn
\ldots
$
\item
[$\to$]
$
\dncast
{
A
\to
\u
B
}{
A'
\to
\u
B'
}
\equidyn
\ldots
$
and
$
\upcast
{
U
(
A
\to
\u
B
)
}{
U
(
A'
\to
\u
B'
)
}
\equidyn
\ldots
$
\item
[0]
$
\upcast
{
0
}{
A
}
V
\equidyn
\absurd
V
$
and
$
\dncast
{
\u
F
0
}{
\u
F A
}
\equidyn
\err
$
\item
[1]
$
\dncast
{
1
}{
\u
B
}
\equidyn
\{\}
$
and
$
\upcast
{
U
1
}{
U
\u
B
}
\equidyn
\thunk
\err
$
\item
[$\top$]
$
\dncast
{
\u
B
}{
\top
}
\equiv
\ldots
$
$
\upcast
{
U
\u
B
}{
U
\top
}
\equiv
\ldots
$
\end{enumerate}
\\
\dncast
{
A
\to
\u
B
}{
A'
\to
\u
B'
}{
\bullet
}
\equidyn
\lambda
{
x
}
.
{
\dncast
{
B
}{
B'
}{
(
\bullet
\,
(
\upcast
{
A
}{
A'
}{
x
}
))
}}
\\
\begin
{
array
}{
l
}
\upcast
{
U
(
A
\to
\u
B
)
}{
U
(
A'
\to
\u
B'
)
}{
f
}
\equidyn\\
\thunk
{
(
\lambda
x'.
\bindXtoYinZ
{
\dncast
{
\u
F A
}{
\u
F A'
}{
(
\ret
x'
)
}}{
x
}{
\force
{
(
\upcast
{
U
\u
B
}{
U
\u
B'
}{
(
\thunk
{
(
\force
{
(
f
)
}
\,
x
)
}
)
}
)
}}
)
}
\end
{
array
}
\\
\\
\upcast
{
0
}{
A
}
z
\equidyn
\absurd
z
\\
\dncast
{
\u
F
0
}{
\u
F A
}{
M
}
\equidyn
\err\\
\\
\dncast
{
\top
}{
\u
B
}{
\bullet
}
\equidyn
\{\}\\
\upcast
{
U
\top
}{
U
\u
B
}{
u
}
\equidyn
\thunk
\err
%% \item[$\top$] $\dncast{\u B}{\top} \equiv \ldots$
%% $\upcast{U \u B}{U \top} \equiv \ldots$
\end
{
array
}
\]
\end{small}
\end{theorem}
\subsection
{
Upcasts are Thunkable, Downcasts are Linear, a posteriori
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment