Skip to content
Snippets Groups Projects
Commit c08d4202 authored by Max New's avatar Max New
Browse files

Start the guarded cubical experiment

parent 19fb32ba
No related branches found
No related tags found
No related merge requests found
......@@ -2,4 +2,69 @@
open import Later
-- | TODO: everything lol
module ErrorDomains(k : Clock) where
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Poset
open import Cubical.Data.Sigma
private
variable
l : Level
A B : Set l
private
▹_ : Set l → Set l
▹_ A = ▹_,_ k A
Predomain : Set₁
Predomain = Poset ℓ-zero ℓ-zero
record MonFun (X Y : Predomain) : Set where
module X = PosetStr (X .snd)
module Y = PosetStr (Y .snd)
_≤X_ = X._≤_
_≤Y_ = Y._≤_
field
f : (X .fst) → (Y .fst)
isMon : ∀ {x y} → x ≤X y → f x ≤Y f y
▸' : ▹ Predomain → Predomain
▸' X = ((@tick x : Tick k) → (X x) .fst) ,
posetstr (fix {k = k} (λ _,_≤_ x₁ x₂ → ▸ λ x → x , x₁ ≤ x₂))
(fix {k = k} λ proofs → isposet {!!} {!!} {!!} {!!} {!!})
▸''_ : Predomain → Predomain
▸'' X = ▸' (next X)
record ErrorDomain : Set₁ where
field
X : Predomain
module X = PosetStr (X .snd)
_≤_ = X._≤_
field
℧ : X .fst
℧⊥ : ∀ x → ℧ ≤ x
θ : MonFun (▸'' X) X
data L℧₀ (X : Set) : Set where
η₀ : X → L℧₀ X
℧ : L℧₀ X
θ₀ : ▹ (L℧₀ X) → L℧₀ X
L℧ : Predomain → ErrorDomain
L℧ X = record { X = L℧X ; ℧ = ℧ ; ℧⊥ = {!!} ; θ = record { f = θ₀ ; isMon = {!!} } }
where
L℧X : Predomain
L℧X = L℧₀ (X .fst) , {!!}
-- | TODO:
-- | 1. monotone monad structure
-- | 2. strict functions
-- | 3. UMP?
-- | 4. show that later preserves domain structures
-- | 5. Solve some example recursive domain equations
-- | 6. Program in shallow embedded lambda calculus
-- | 7. Embedding-Projection pairs!
-- | 8. GLTC Syntax, Inequational theory
-- | 9. Model of terms & inequational theory
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment