Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
bdbe1b23
Commit
bdbe1b23
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
work on nbe
parent
3660ccf4
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Syntax/Nbe.agda
+129
-63
129 additions, 63 deletions
formalizations/guarded-cubical/Syntax/Nbe.agda
with
129 additions
and
63 deletions
formalizations/guarded-cubical/Syntax/Nbe.agda
+
129
−
63
View file @
bdbe1b23
...
@@ -34,12 +34,21 @@ data CompNF (Γ : Ctx) : (R : Ty) → Type (ℓ-suc ℓ-zero) where
...
@@ -34,12 +34,21 @@ data CompNF (Γ : Ctx) : (R : Ty) → Type (ℓ-suc ℓ-zero) where
tickNF : CompNF Γ R → CompNF Γ R
tickNF : CompNF Γ R → CompNF Γ R
neuNF : Comp Γ R → CompNF Γ R
neuNF : Comp Γ R → CompNF Γ R
bindNF' : CompNF Γ R → CompNF (R ∷ Γ) S → CompNF Γ S
-- neuNF is a congruence with respect to equality of Comp
bindNF' errNF K = errNF
neuNF-cong : M ≡ N → neuNF M ≡ neuNF N
bindNF' (retNF x) K = {!K [ ids ,s x ]cnf!}
bindNF' (bindNF x Mnf) K = {!!}
-- strictness :
bindNF' (tickNF Mnf) K = tickNF (bindNF' Mnf K)
bindNF' (neuNF x) K = neuNF {!!}
_[_]cnf : CompNF Γ R → Subst Δ Γ → CompNF Δ R
errNF [ γ ]cnf = errNF
retNF V [ γ ]cnf = retNF (V [ γ ]v)
bindNF M Nnf [ γ ]cnf = bindNF (M [ γ ]c) (Nnf [ γ ∘s wk ,s var ]cnf)
tickNF M [ γ ]cnf = tickNF (M [ γ ]cnf)
neuNF M [ γ ]cnf = neuNF (M [ γ ]c)
_[_]sem : ctx-sem Γ Δ → Subst Θ Δ → ctx-sem Γ Θ
_[_]sem : ctx-sem Γ Δ → Subst Θ Δ → ctx-sem Γ Θ
_[_]sem {Γ = []} tt* δ = tt*
_[_]sem {Γ = []} tt* δ = tt*
...
@@ -67,6 +76,52 @@ reflect<-reify≡id : (γ~ : ctx-sem Γ Δ) → reflect (reify γ~) ≡ γ~
...
@@ -67,6 +76,52 @@ reflect<-reify≡id : (γ~ : ctx-sem Γ Δ) → reflect (reify γ~) ≡ γ~
reflect<-reify≡id {Γ = []} γ~ = refl
reflect<-reify≡id {Γ = []} γ~ = refl
reflect<-reify≡id {Γ = x ∷ Γ} γ~ = ΣPathP (cong reflect wkβ ∙ reflect<-reify≡id (γ~ .fst) , varβ)
reflect<-reify≡id {Γ = x ∷ Γ} γ~ = ΣPathP (cong reflect wkβ ∙ reflect<-reify≡id (γ~ .fst) , varβ)
reifyC : CompNF Γ R -> Comp Γ R
reifyC errNF = err'
reifyC (retNF V) = ret' V
reifyC (bindNF M Nnf) = bind (reifyC Nnf) [ M ]∙
reifyC (tickNF M) = tick (reifyC M)
reifyC (neuNF M) = M
{-
reflectC : Comp Γ R -> CompNF Γ R
reflectC (E [ M ]∙) = bindNF M {!!}
reflectC (plugId i) = {!!}
reflectC (plugAssoc i) = {!!}
reflectC (M [ γ ]c) = neuNF (M [ γ ]c)
reflectC (substId i) = {!!}
reflectC (substAssoc i) = {!!}
reflectC (substPlugDist i) = {!!}
reflectC err = errNF
reflectC (strictness i) = {!!}
reflectC ret = retNF var
reflectC (ret-β i) = {!!}
reflectC app = neuNF app
reflectC (fun-β i) = {!!}
reflectC (matchNat M N) = neuNF (matchNat {!!} {!!})
reflectC (matchNatβz M N i) = {!!}
reflectC (matchNatβs M N V i) = {!!}
reflectC (matchNatη i) = {!!}
reflectC (matchDyn M M₁) = {!!}
reflectC (matchDynβn M N V i) = {!!}
reflectC (matchDynβf M N V i) = {!!}
reflectC (tick M) = tickNF (reflectC M)
reflectC (tick-strictness i) = {!!}
reflectC (isSetComp M N p q i j) = {!!}
-}
-- bindNF : Comp Γ R → CompNF (R ∷ Γ) S → CompNF Γ S
bindNF' : CompNF Γ R → CompNF (R ∷ Γ) S → CompNF Γ S
bindNF' errNF K = errNF
bindNF' (retNF x) K = K [ ids ,s x ]cnf
bindNF' (bindNF {R = R'} M Nnf) K = bindNF M (bindNF' Nnf (K [ wk ∘s wk ,s var ]cnf))
-- Also works: bindNF M (bindNF (reifyC Nnf) (K [ wk ∘s wk ,s var ]cnf))
bindNF' (tickNF Mnf) K = tickNF (bindNF' Mnf K)
bindNF' (neuNF M) K = neuNF ((bind (reifyC K)) [ M ]∙) -- correct?
-- Part 3: give a semantics of terms as "polymorphic transformations"
-- Part 3: give a semantics of terms as "polymorphic transformations"
-- These will all end up being natural but fortunately we don't need that.
-- These will all end up being natural but fortunately we don't need that.
...
@@ -74,42 +129,53 @@ ev-sem' : EvCtx Γ R S → ∀ {Θ} → ctx-sem Γ Θ → CompNF Θ R → CompNF
...
@@ -74,42 +129,53 @@ ev-sem' : EvCtx Γ R S → ∀ {Θ} → ctx-sem Γ Θ → CompNF Θ R → CompNF
comp-sem' : Comp Γ R → ∀ {Θ} → ctx-sem Γ Θ → CompNF Θ R
comp-sem' : Comp Γ R → ∀ {Θ} → ctx-sem Γ Θ → CompNF Θ R
ev-sem' ∙E x M~ = M~
ev-sem' ∙E x M~ = M~
ev-sem' (E ∘E E₁) x M~ = {!!}
ev-sem' (E ∘E F) x M~ = ev-sem' E x (ev-sem' F x M~)
ev-sem' (∘IdL i) x M~ = {!!}
ev-sem' (∘IdL {E = E} i) x M~ = ev-sem' E x M~
ev-sem' (∘IdR i) x M~ = {!!}
ev-sem' (∘IdR {E = E} i) x M~ = ev-sem' E x M~
ev-sem' (∘Assoc i) x M~ = {!!}
ev-sem' (∘Assoc {E = E} {F = F} {F' = F'} i) x M~ = ev-sem' E x (ev-sem' F x (ev-sem' F' x M~))
ev-sem' (E [ x₁ ]e) x M~ = {!!}
ev-sem' (E [ γ ]e) x M~ = ev-sem' E (reflect (γ ∘s reify x)) M~ -- could define differently?
ev-sem' (substId i) x M~ = {!!}
ev-sem' (substId {E = E} i) x M~ = ev-sem' E (pf i) M~
ev-sem' (substAssoc i) x M~ = {!!}
where pf : reflect (ids ∘s reify x) ≡ x
ev-sem' (∙substDist i) x M~ = {!!}
pf = (cong reflect ∘IdL) ∙ (reflect<-reify≡id x)
ev-sem' (∘substDist i) x M~ = {!!}
ev-sem' (substAssoc {E = E} {γ = γ} {δ = δ} i) x M~ = ev-sem' E (reflect (pf i)) M~
ev-sem' (bind N[x]) x M~ = {!!}
where
pf : ((γ ∘s δ) ∘s reify x) ≡ (γ ∘s reify (reflect (δ ∘s reify x)))
pf = sym ∘Assoc ∙ cong₂ _∘s_ refl (sym (reify<-reflect≡id _))
-- pf : ((γ ∘s δ) ∘s reify x) ≡
-- (γ ∘ (δ ∘s reify x)) ≡
-- (γ ∘s reify (reflect (δ ∘s reify x)))
ev-sem' (∙substDist i) x M~ = M~
ev-sem' (∘substDist {E = E} {F = F} {γ = γ} i) x M~ =
ev-sem' E (reflect (γ ∘s reify x)) (ev-sem' F (reflect (γ ∘s reify x)) M~)
ev-sem' (bind N[x]) x M~ = bindNF (reifyC M~) (comp-sem' N[x] (wk-ctx-sem x , var)) -- ???
ev-sem' (ret-η i) x M~ = {!!}
ev-sem' (ret-η i) x M~ = {!!}
ev-sem' (isSetEvCtx E E₁ x₁ y i i₁) x M~ = {!!}
ev-sem' (isSetEvCtx E F p q i j) x M~ = {!!}
comp-sem' (E [ M ]∙) x = {!!}
comp-sem' (plugId i) x = {!!}
comp-sem' (E [ M ]∙) x = ev-sem' E x (comp-sem' M x)
comp-sem' (plugAssoc i) x = {!!}
comp-sem' (plugId {M = M} i) x = comp-sem' M x
comp-sem' (M [ x₁ ]c) x = {!!}
comp-sem' (plugAssoc {F = F} {E = E} {M = M} i) x = ev-sem' F x (ev-sem' E x (comp-sem' M x))
comp-sem' (substId i) x = {!!}
comp-sem' (M [ γ ]c) x = comp-sem' M (reflect (γ ∘s reify x)) -- could define differently?
comp-sem' (substAssoc i) x = {!!}
comp-sem' (substId {M = M} i) x = {!!}
comp-sem' (substPlugDist i) x = {!!}
comp-sem' (substAssoc {δ = δ} {γ = γ} i) x = {!!}
comp-sem' err x = {!!}
comp-sem' (substPlugDist {E = E} {M = M} {γ = γ} i) x =
ev-sem' E (reflect (γ ∘s reify x)) (comp-sem' M (reflect (γ ∘s reify x)))
comp-sem' err x = errNF
comp-sem' (strictness i) x = {!!}
comp-sem' (strictness i) x = {!!}
comp-sem' ret
x = {!!}
comp-sem' ret
(_ , V) = retNF V
comp-sem' (ret-β i) x = {!!}
comp-sem' (ret-β i) x = {!!}
comp-sem' app
x = {!!}
comp-sem' app
((_ , Vf) , Vx) = neuNF (app [ !s ,s Vf ,s Vx ]c)
comp-sem' (fun-β i) x = {!!}
comp-sem' (fun-β i) x = {!!}
comp-sem' (matchNat
M M₁
) x
= {!!}
comp-sem' (matchNat
Kz Ks
)
(
x
, Vn) = neuNF (matchNat Kz Ks [ reify x ,s Vn ]c)
comp-sem' (matchNatβz M
M₁
i) x = {!!}
comp-sem' (matchNatβz M
N
i) x = {!!}
comp-sem' (matchNatβs M
M₁
V i) x = {!!}
comp-sem' (matchNatβs M
N
V i) x = {!!}
comp-sem' (matchNatη i) x = {!!}
comp-sem' (matchNatη i) x = {!!}
comp-sem' (matchDyn M
M₁
) x = {!!}
comp-sem' (matchDyn M
N
) x = {!!}
comp-sem' (matchDynβn M
M₁
V i) x = {!!}
comp-sem' (matchDynβn M
N
V i) x = {!!}
comp-sem' (matchDynβf M
M₁
V i) x = {!!}
comp-sem' (matchDynβf M
N
V i) x = {!!}
comp-sem' (tick M) x =
{!!}
comp-sem' (tick M) x =
tickNF (comp-sem' M x)
comp-sem' (tick-strictness i) x = {!!}
comp-sem' (tick-strictness i) x = {!!}
comp-sem' (isSetComp M
M₁ x₁ y
i
i₁
) x = {!!}
comp-sem' (isSetComp M
N p q
i
j
) x = {!!}
subst-sem : Subst Δ Γ → ∀ {Θ} → ctx-sem Δ Θ → ctx-sem Γ Θ
subst-sem : Subst Δ Γ → ∀ {Θ} → ctx-sem Δ Θ → ctx-sem Γ Θ
...
@@ -126,11 +192,11 @@ subst-sem wk = fst
...
@@ -126,11 +192,11 @@ subst-sem wk = fst
-- these equations should essentially hold by refl
-- these equations should essentially hold by refl
subst-sem ([]η i) = λ _ → tt*
subst-sem ([]η i) = λ _ → tt*
subst-sem (∘IdL {γ = γ} i) = subst-sem γ
subst-sem (∘IdL {γ = γ} i) = subst-sem γ
subst-sem (∘IdR
i) = {!!}
subst-sem (∘IdR
{γ = γ} i) = subst-sem γ
subst-sem (∘Assoc
i) = {!!}
subst-sem (∘Assoc
{γ = γ} {δ = δ} {θ = θ} i) x = subst-sem γ (subst-sem δ (subst-sem θ x))
subst-sem (wkβ
i) = {!!}
subst-sem (wkβ
{δ = δ} {V = V} i) x = subst-sem δ x
subst-sem (,sη
i) = {!!}
subst-sem (,sη
{δ = δ} i) x = subst-sem δ x
subst-sem (isSetSubst γ γ
₁ x y
i
i₁
) = {!!}
subst-sem (isSetSubst γ γ
' p q
i
j
) = {!!}
val-sem (V [ γ ]v) x = val-sem V (subst-sem γ x)
val-sem (V [ γ ]v) x = val-sem V (subst-sem γ x)
val-sem var x = x .snd
val-sem var x = x .snd
...
@@ -138,9 +204,9 @@ val-sem zro x = zro [ !s ]v
...
@@ -138,9 +204,9 @@ val-sem zro x = zro [ !s ]v
val-sem suc (_ , n) = suc [ !s ,s n ]v
val-sem suc (_ , n) = suc [ !s ,s n ]v
val-sem (lda M[x]) x = lda (comp-sem M[x] ((x [ wk ]sem) , var))
val-sem (lda M[x]) x = lda (comp-sem M[x] ((x [ wk ]sem) , var))
val-sem injectN
x = {!!}
val-sem injectN
(_ , V) = injectN [ !s ,s V ]v
val-sem (injectArr V) x = {!!}
val-sem (injectArr V) x = {!!}
val-sem (mapDyn V V
₁
) x = {!!}
val-sem (mapDyn V
n
V
f
) x = {!!}
-- don't bother proving these until you have to
-- don't bother proving these until you have to
val-sem (varβ i) x = {!!}
val-sem (varβ i) x = {!!}
...
@@ -164,38 +230,38 @@ comp-sem (matchDyn Mn Md) (x , d) =
...
@@ -164,38 +230,38 @@ comp-sem (matchDyn Mn Md) (x , d) =
[ ids ,s d ]c
[ ids ,s d ]c
comp-sem (tick M) x =
comp-sem (tick M) x =
tick (comp-sem M x)
tick (comp-sem M x)
comp-sem (plugId
i) x = {!!}
comp-sem (plugId
{M = M} i) x = comp-sem M x
comp-sem (plugAssoc
i) x = {!!}
comp-sem (plugAssoc
{F = F} {E = E} {M = M} i) x = ev-sem F x (ev-sem E x (comp-sem M x))
comp-sem (substId
i) x = {!!}
comp-sem (substId
{M = M} i) x = comp-sem M x
comp-sem (substAssoc
i) x = {!!}
comp-sem (substAssoc
{M = M} {δ = δ} {γ = γ} i) x = comp-sem M (subst-sem δ (subst-sem γ x))
comp-sem (substPlugDist
i) x = {!!}
comp-sem (substPlugDist
{E = E} {M = M} {γ = γ} i) x = ev-sem E (subst-sem γ x) (comp-sem M (subst-sem γ x))
comp-sem (strictness i) x = {!!}
comp-sem (strictness
{E = E}
i) x = {!!}
comp-sem (ret-β i) x = {!!}
comp-sem (ret-β i) x = {!!}
comp-sem (fun-β i) x = {!!}
comp-sem (fun-β i) x = {!
fun-β
!}
comp-sem (matchNatβz M
M₁
i) x = {!!}
comp-sem (matchNatβz M
N
i) x = {!!}
comp-sem (matchNatβs M
M₁
V i) x = {!!}
comp-sem (matchNatβs M
N
V i) x = {!!}
comp-sem (matchNatη i) x = {!!}
comp-sem (matchNatη i) x = {!!}
comp-sem (matchDynβn M
M₁
V i) x = {!!}
comp-sem (matchDynβn M
N
V i) x = {!!}
comp-sem (matchDynβf M
M₁
V i) x = {!!}
comp-sem (matchDynβf M
N
V i) x = {!!}
comp-sem (tick-strictness i) x = {!!}
comp-sem (tick-strictness i) x = {!!}
comp-sem (isSetComp M
M₁ x₁ y
i
i₁
) x = {!!}
comp-sem (isSetComp M
N p q
i
j
) x = {!!}
ev-sem ∙E x M = M
ev-sem ∙E x M = M
ev-sem (E ∘E E₁) x M = ev-sem E x (ev-sem E₁ x M)
ev-sem (E ∘E E₁) x M = ev-sem E x (ev-sem E₁ x M)
ev-sem (E [ γ ]e) x M = ev-sem E (subst-sem γ x) M
ev-sem (E [ γ ]e) x M = ev-sem E (subst-sem γ x) M
ev-sem (bind K) x M = bind (comp-sem K ((x [ wk ]sem) , var)) [ M ]∙
ev-sem (bind K) x M = bind (comp-sem K ((x [ wk ]sem) , var)) [ M ]∙
ev-sem (∘IdL i) x M =
{!!}
ev-sem (∘IdL
{E = E}
i) x M =
ev-sem E x M
ev-sem (∘IdR i) x M =
{!!}
ev-sem (∘IdR
{E = E}
i) x M =
ev-sem E x M
ev-sem (∘Assoc
i) x M = {!!}
ev-sem (∘Assoc
{E = E} {F = F} {F' = F'} i) x M = ev-sem E x (ev-sem F x (ev-sem F' x M))
ev-sem (substId i) x M =
{!!}
ev-sem (substId
{E = E}
i) x M =
ev-sem E x M
ev-sem (substAssoc
i) x M = {!!}
ev-sem (substAssoc
{E = E} {γ = γ} {δ = δ} i) x M = ev-sem E (subst-sem γ (subst-sem δ x)) M
ev-sem (∙substDist i) x M = M
ev-sem (∙substDist i) x M = M
ev-sem (∘substDist
i) x M = {!!}
ev-sem (∘substDist
{E = E} {F = F} {γ = γ} i) x M = ev-sem E (subst-sem γ x) (ev-sem F (subst-sem γ x) M)
ev-sem (ret-η i) x M = {!!}
ev-sem (ret-η i) x M = {!!}
ev-sem (isSetEvCtx E
E₁ x₁ y
i
i₁
) x M = {!!}
ev-sem (isSetEvCtx E
F p q
i
j
) x M = {!!}
-- Part 4: Show the semantics of terms is equivalent to the yoneda
-- Part 4: Show the semantics of terms is equivalent to the yoneda
-- embedding of terms UP TO the equivalence between ctx-sem and Subst.
-- embedding of terms UP TO the equivalence between ctx-sem and Subst.
...
@@ -214,7 +280,7 @@ subst-correct !s δ~ = []η
...
@@ -214,7 +280,7 @@ subst-correct !s δ~ = []η
subst-correct (γ ,s v) δ~ = {!!}
subst-correct (γ ,s v) δ~ = {!!}
subst-correct wk δ~ = wkβ
subst-correct wk δ~ = wkβ
-- This all should follow by isSet stuff
-- This all should follow by isSet stuff
subst-correct (∘IdL i) δ~ = {!!}
subst-correct (∘IdL
{γ = γ'}
i) δ~ = {!!}
subst-correct (∘IdR i) δ~ = {!!}
subst-correct (∘IdR i) δ~ = {!!}
subst-correct (∘Assoc i) δ~ = {!!}
subst-correct (∘Assoc i) δ~ = {!!}
subst-correct (isSetSubst γ γ₁ x y i i₁) δ~ = {!!}
subst-correct (isSetSubst γ γ₁ x y i i₁) δ~ = {!!}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment