Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
bbc27e35
Commit
bbc27e35
authored
6 years ago
by
Max New
Browse files
Options
Downloads
Patches
Plain Diff
add description of additives
parent
b6325554
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
gcbpv.tex
+248
-53
248 additions, 53 deletions
gcbpv.tex
with
248 additions
and
53 deletions
gcbpv.tex
+
248
−
53
View file @
bbc27e35
\documentclass
{
article
}
\usepackage
{
float
}
\usepackage
{
amsmath,amssymb
}
\usepackage
{
tikz-cd
}
\usepackage
{
mathpartir
}
...
...
@@ -21,6 +22,8 @@
\newcommand
{
\ltdynv
}{
\mathrel
{
\sqsubseteq
_
V
}}
\newcommand
{
\ltdynt
}{
\mathrel
{
\sqsubseteq
_
T
}}
\newcommand
{
\pair
}
[2]
{
\{
\pi
\mapsto
{
#1
}
\pipe
\pi
'
\mapsto
{
#2
}
\}
}
\newcommand
{
\dyn
}{{
?
}}
\newcommand
{
\dynv
}{{
?
}}
\newcommand
{
\dync
}{
\u
{
\text
{
?`
}}}
...
...
@@ -58,7 +61,7 @@ Gradual Call-by-push-value adds an ordering form for each of these
judgments: value type dynamism, computation type dynamism, value
dynamism, term dynamism and stack dynamism.
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
A
\vtype
\and
...
...
@@ -124,7 +127,7 @@ Additionally, there are rules making each of the orderings into
\emph
{
preorders
}
: i.e., there are reflexivity and transitivity rules
for each.
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{}
...
...
@@ -141,10 +144,10 @@ for each.
{
\Gamma
\vdash
v[
\gamma
] : A
}
\inferrule
{
\Phi
'
\vdash
v
_
1
\ltdyn
v
_
2 : A
_
1
\ltdyn
A
_
2
\
and
{
\Phi
'
\vdash
v
_
1
\ltdyn
v
_
2 : A
_
1
\ltdyn
A
_
2
\
\
\forall
(x
_
1'
\ltdyn
x
_
2' : A
_
1'
\ltdyn
A
_
2'
\in
\Phi
').
\Phi
\vdash
\gamma
_
1(x
_
1')
\ltdyn
\gamma
_
2(x
_
2') : A
_
1'
\ltdyn
A
_
2'
}
{
\Phi
\vdash
v
_
1[
\gamma
_
1]
\ltdyn
v
_
2[
\gamma
_
2] : A
_
1
\ltdyn
A
_
2
}
{
\Phi
\vdash
v
_
1[
\gamma
_
1]
\ltdyn
v
_
2[
\gamma
_
2] : A
_
1
\ltdyn
A
_
2
}
\\
\inferrule
{
\gamma
:
\prod
_{
x' : A'
\in
\Gamma
'
}
\Gamma
\vdash
\cdot
: A'
\and
...
...
@@ -153,10 +156,10 @@ for each.
{
\Gamma
\vdash
M[
\gamma
] :
\u
B
}
\inferrule
{
\Phi
'
\vdash
M
_
1
\ltdyn
M
_
2 :
\u
B
_
1
\ltdyn
\u
B
_
2
\
and
{
\Phi
'
\vdash
M
_
1
\ltdyn
M
_
2 :
\u
B
_
1
\ltdyn
\u
B
_
2
\
\
\forall
(x
_
1'
\ltdyn
x
_
2' : A
_
1'
\ltdyn
A
_
2'
\in
\Phi
').
\Phi
\vdash
\gamma
_
1(x
_
1')
\ltdyn
\gamma
_
2(x
_
2') : A
_
1'
\ltdyn
A
_
2'
}
{
\Phi
\vdash
M
_
1[
\gamma
_
1]
\ltdyn
M
_
2[
\gamma
_
2] :
\u
B
_
1
\ltdyn
\u
B
_
2
}
{
\Phi
\vdash
M
_
1[
\gamma
_
1]
\ltdyn
M
_
2[
\gamma
_
2] :
\u
B
_
1
\ltdyn
\u
B
_
2
}
\\
\inferrule
{
\gamma
:
\prod
_{
x' : A'
\in
\Gamma
'
}
\Gamma
\vdash
\cdot
: A'
\and
...
...
@@ -165,10 +168,10 @@ for each.
{
\Gamma\pipe
\u
B
\vdash
S[
\gamma
] :
\u
C
}
\inferrule
{
\Phi
'
\pipe
\hole\ltdyn
\hole
:
\u
B
_
1
\ltdyn
\u
B
_
2
\vdash
S
_
1
\ltdyn
S
_
2 :
\u
C
_
1
\ltdyn
\u
C
_
2
\
and
{
\Phi
'
\pipe
\hole\ltdyn
\hole
:
\u
B
_
1
\ltdyn
\u
B
_
2
\vdash
S
_
1
\ltdyn
S
_
2 :
\u
C
_
1
\ltdyn
\u
C
_
2
\
\
\forall
(x
_
1'
\ltdyn
x
_
2' : A
_
1'
\ltdyn
A
_
2'
\in
\Phi
').
\Phi
\vdash
\gamma
_
1(x
_
1')
\ltdyn
\gamma
_
2(x
_
2') : A
_
1'
\ltdyn
A
_
2'
}
{
\Phi
\pipe
\hole\ltdyn
\hole
:
\u
B
_
1
\ltdyn
\u
B
_
2
\vdash
S
_
1[
\gamma
_
1]
\ltdyn
S
_
2[
\gamma
_
2] :
\u
C
_
1
\ltdyn
\u
C
_
2
}
}
{
\Phi
\pipe
\hole\ltdyn
\hole
:
\u
B
_
1
\ltdyn
\u
B
_
2
\vdash
S
_
1[
\gamma
_
1]
\ltdyn
S
_
2[
\gamma
_
2] :
\u
C
_
1
\ltdyn
\u
C
_
2
}
\\
\inferrule
{}{
\Gamma\pipe
\hole
:
\u
B
\vdash
\hole
:
\u
B
}
...
...
@@ -185,7 +188,7 @@ for each.
\caption
{
GCBPV Basic Judgmental Rules 1 (Identities, Substitutions)
}
\end{figure}
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{}
...
...
@@ -282,7 +285,7 @@ be \emph{derived} using the $F,U$ adjoint type constructors, which
will both be defined to be
\emph
{
monotone
}
with respect to type
dynamism.
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{
\Gamma
\vdash
v : A
_
1
\and
A
_
1
\ltdyn
A
_
2
}
...
...
@@ -344,7 +347,7 @@ theorem that monotone functors preserve representability, so we get
that for
$
\u
F
$
and
$
U
$
types, we have both an upcast and a downcast
from a preordering.
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{
A
\vtype
}
...
...
@@ -433,7 +436,7 @@ from a preordering.
\caption
{
Adjunction Constructors (Stoupified) Beta and Eta are presented with and without cuts
}
\end{figure}
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{
\Gamma
, x : A
_
1
\vdash
\upcast
{
A
_
1
}
{
A
_
2
}
x : A
_
2
}
...
...
@@ -462,7 +465,7 @@ from a preordering.
\caption
{
Functoriality Preserves Representability (Theorem Statments)
}
\end{figure}
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule*
{
\hole
\ltdyn
\lett
x =
\hole
;
\ret
x
\and
...
...
@@ -514,8 +517,12 @@ from a preordering.
\end{figure}
It seems like the easiest thing to do is have a most dynamic function
type and product type, but I'm not sure if it's really necessary.
%
Explore this in the models.
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{}{
\dynv
\vtype
}
...
...
@@ -528,57 +535,193 @@ from a preordering.
\caption
{
Dynamic Types
}
\end{figure}
\section
{
Model
s
}
\section
{
Connectives and Contract Uniqueness Theorem
s
}
A model of gcbpv consists of a preorder-enriched cbpv model with
specified interpretations of
$
\dynv
,
\dync
$
and the following
precision judgments. Note that we don't need
$
0
\ltdyn
\dynv
$
and
$
\top
\ltdyn
\dync
$
because those are uniquely determined by the
universal property.
Next we consider the multiplicative and additive connectives of
gradual call-by-push value, and their corresponding contracts.
%
We start with the additives because they are comparatively easier.
\begin{mathpar}
1
\ltdyn
\dynv
\subsection
{
Additive Connectives: Positive Sum, Negative Product
}
\dynv
\times
\dynv
\ltdyn
\dynv
\dynv
+
\dynv
\ltdyn
\dynv
First, we introduce the sum type, which is a
\emph
{
value
}
type
constructor.
%
It has two value constructors
$
\sigma
$
and
$
\sigma
'
$
for the left and
right injections.
%
It's universal property is given by case analysis.
%
It should have this universal property
\emph
{
any
}
time it appears as a
variable, which means that we need case analysis values, computations
and stacks.
%
Having two different, seemingly unrelated forms of pattern matching
looks problematic, but they are not unrelated, we can show that
substituting a value with a pattern match into a term is equivalent to
first lifting the pattern match out of the term and then substituting.
%
This
\begin{align*}
M[
\case
v
\{
\sigma
x
\mapsto
v
_
k
\pipe
\sigma
' x'
\mapsto
v
_
k'
\}
/x
_
+ ]
&
=
M[
\case
y
\{
\sigma
x
\mapsto
v
_
k
\pipe
\sigma
' x'
\mapsto
v
_
k'
\}
/x
_
+][v/y]
\\
&
\equidyn
(
\case
y
\{
\\
&
\qquad
\sigma
x
\mapsto
M[
\case
\sigma
x
\{
\sigma
x
\mapsto
v
_
k
\pipe
\sigma
' x'
\mapsto
v
_
k'
\}
/x
_
+]
\\
&
\qquad
\pipe
\sigma
' x'
\mapsto
M[
\case
\sigma
' x'
\{
\sigma
x
\mapsto
v
_
k
\pipe
\sigma
' x'
\mapsto
v
_
k'
\}
/x
_
+]
\\
&
\quad
\}
)[v/y]
\\
&
\equidyn
(
\case
y
\{
\\
&
\qquad
\sigma
x
\mapsto
M[v
_
k /x
_
+]
\\
&
\qquad
\pipe
\sigma
' x'
\mapsto
M[v
_
k'/x
_
+]
\\
&
\quad
\}
)[v/y]
\\
&
=
\case
v
\{
\sigma
x
\mapsto
M[v
_
k/x
_
+]
\pipe
\sigma
' x'
\mapsto
M[v
_
k'/x
_
+]
\}
\end{align*}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{
A
\vtype
\and
A'
\vtype
}
{
A + A'
\vtype
}
\inferrule
{
A
_
1
\ltdyn
A
_
2
\and
A
_
1'
\ltdyn
A
_
2'
}
{
A
_
1 + A
_
1'
\ltdyn
A
_
2 + A
_
2'
}
\\
U
\dync
\ltdyn
\dynv\\
\dync
\wedge
\dync
\ltdyn
\dync
\inferrule
{
\Gamma
\vdash
v : A
}
{
\Gamma
\vdash
\sigma
_{
A,A'
}
v : A + A'
}
\dynv
\to
\dync
\ltdyn
\dync
\inferrule
{
\Gamma
\vdash
v' : A'
}
{
\Gamma
\vdash
\sigma
'
_{
A,A'
}
v' : A + A'
}
\u
F
\dynv
\ltdyn
\dync
\end{mathpar}
\inferrule
{
v
_
1
\ltdyn
v
_
2 : A
_
1
\ltdyn
A
_
2
\and
A
_
1'
\ltdyn
A
_
2'
}
{
\sigma
v
_
1
\ltdyn
\sigma
v
_
2 : A
_
1 + A
_
1'
\ltdyn
A
_
2 + A
_
2'
}
Next, we will use poset CBPV as a metalanguage and compile GCBPV into
poset CBPV with recursive types.
\inferrule
{
v
_
1'
\ltdyn
v
_
2' : A
_
1'
\ltdyn
A
_
2'
\and
A
_
1
\ltdyn
A
_
2
}
{
\sigma
' v
_
1'
\ltdyn
\sigma
' v
_
2' : A
_
1 + A
_
1'
\ltdyn
A
_
2 + A
_
2'
}
\begin{mathpar}
\dynv
(X,
\u
Y) = 1 + (X
\times
X) + (X + X) + U
\u
Y
\inferrule
{
\Gamma
\vdash
v : A + A'
\and
\Gamma
, x:A
\vdash
v
_
k : A
_
3
\and
\Gamma
, x':A'
\vdash
v
_
k' : A
_
3
}
{
\Gamma
\vdash
\case
v
\{\sigma
x
\mapsto
v
_
k
\pipe
\sigma
' x'
\mapsto
v
_
k'
\}
: A
_
3
}
\dync
(X,
\u
Y) = (
\u
Y
\wedge
\u
Y)
\wedge
(X
\to
\u
Y)
\wedge
\u
F X
\inferrule
{
\Phi
\vdash
v
_
1
\ltdyn
v
_
2 : A
_
1 + A
_
1'
\ltdyn
A
_
2 + A
_
2'
\\
\Phi
, x
_
1
\ltdyn
x
_
1:A
_
1
\ltdyn
A
_
1
\vdash
v
_{
k,1
}
\ltdyn
v
_{
k,2
}
: A
_
3
\ltdyn
A
_
4
\\
\Phi
, x
_
1'
\ltdyn
x
_
1':A
_
1'
\ltdyn
A
_
1'
\vdash
v
_{
k,1
}
'
\ltdyn
v
_{
k,2
}
' : A
_
3
\ltdyn
A
_
4
}
{
\Phi
\vdash
\case
v
_
1
\{\sigma
x
_
1
\mapsto
v
_{
k,1
}
\pipe
\sigma
' x
_
1'
\mapsto
v
_{
k,1
}
'
\}
\ltdyn
\case
v
_
2
\{\sigma
x
_
2
\mapsto
v
_{
k,2
}
\pipe
\sigma
' x
_
2'
\mapsto
v
_{
k,2
}
'
\}
: A
_
3
\ltdyn
A
_
4
}
\dynv
=
\mu
X.
\dynv
(X,
\u
\mu
\u
Y.
\dync
(X,
\u
Y))
\dync
=
\mu
\u
Y.
\dync
(
\mu
X.
\dynv
(X,
\u
Y),
\u
Y)
\end{mathpar}
\inferrule
{
\Gamma
\vdash
v : A + A'
\and
\Gamma
, x:A
\pipe
\Delta
\vdash
M :
\u
B
\and
\Gamma
, x':A'
\pipe
\Delta
\vdash
M' :
\u
B
}
{
\Gamma\pipe
\Delta
\vdash
\case
v
\{\sigma
x
\mapsto
M
\pipe
\sigma
' x'
\mapsto
M'
\}
:
\u
B
}
We call the cases of
$
\dynv
$
the ``tag types'' and abbreviate them
$
T
$
because they are the tags of the sum, and the cases of the
$
\dync
$
the
``message types'' and abbreviate them
$
\u
M
$
because they are the
possible messages of the ``coinductive'' dynamic type.
%
We implement the appropriate casts and their adjoints as follows
\inferrule
{
\Phi
\vdash
v
_
1
\ltdyn
v
_
2 : A
_
1 + A
_
1'
\ltdyn
A
_
2 + A
_
2'
\\
\Phi
, x
_
1
\ltdyn
x
_
1:A
_
1
\ltdyn
A
_
1
\pipe
\Psi
\vdash
M
_
1
\ltdyn
M
_
2 :
\u
B
_
1
\ltdyn
\u
B
_
2
\\
\Phi
, x
_
1'
\ltdyn
x
_
1':A
_
1'
\ltdyn
A
_
1'
\pipe\Psi
\vdash
M
_
1'
\ltdyn
M
_
2' :
\u
B
_
1
\ltdyn
\u
B
_
2
}
{
\Phi\pipe\Psi
\vdash
\case
v
_
1
\{\sigma
x
_
1
\mapsto
M
_
1
\pipe
\sigma
' x
_
1'
\mapsto
M
_
1'
\}
\ltdyn
\case
v
_
2
\{\sigma
x
_
2
\mapsto
M
_
2
\pipe
\sigma
' x
_
2'
\mapsto
M
_
2'
\}
:
\u
B
_
1
\ltdyn
\u
B
_
2
}
\[
\upcast
T
\dynv
x
=
\roll
\sigma
_
T x
\]
\[
\dncast
{
\u
F T
}
{
\u
F
\dynv
}
\hole
=
\lett
x
=
\hole
;
\case
\unroll
x
\{
\sigma
_
T y
\mapsto
y;
\sigma
_{
T'
}
y
\mapsto
\err
\}
\]
\case
\sigma
v
\{
\sigma
x
\mapsto
v
_
k
\pipe
\sigma
' x'
\mapsto
v
_
k'
\}
\equidyn
v
_
k[v/x]
\\
\case
\sigma
' v'
\{
\sigma
x
\mapsto
v
_
k
\pipe
\sigma
' x'
\mapsto
v
_
k'
\}
\equidyn
v
_
k'[v'/x']
\\
\case
\sigma
v
\{
\sigma
x
\mapsto
M
\pipe
\sigma
' x'
\mapsto
M'
\}
\equidyn
M[v/x]
\\
\case
\sigma
' v'
\{
\sigma
x
\mapsto
M
\pipe
\sigma
' x'
\mapsto
M'
\}
\equidyn
M'[v'/x']
\\
\[
\dncast
{
\u
M
}
\dync
\hole
=
\pi
_{
\u
M
}
\u
\unroll
\hole
\]
\[
\upcast
{
U
\u
M
}
{
U
\dync
}
x
=
\u
\roll
\thunk
[
\pi
_{
\u
M
}
\mapsto
\force
x;
\pi
_{
\u
M'
}
\mapsto
\err
]
\]
\inferrule
{
x
_
+ : A + A'
}
{
v
\equidyn
\case
x
_
+
\{
\sigma
x
\mapsto
v[
\sigma
x/x+
_
]
\pipe
\sigma
' x'
\mapsto
v[
\sigma
' x'/x
_
+]
\}
}
\inferrule
{
x
_
+ : A + A'
}
{
M
\equidyn
\case
x
_
+
\{
\sigma
x
\mapsto
M[
\sigma
x/x+
_
]
\pipe
\sigma
' x'
\mapsto
M[
\sigma
' x'/x
_
+]
\}
}
\end{mathpar}
\caption
{
Binary Sum
}
\end{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{
B
\ctype
\and
B'
\ctype
}
{
B
\wedge
B'
\ctype
}
\inferrule
{
B
_
1
\ltdyn
B
_
2
\and
B
_
1'
\ltdyn
B
_
2'
}
{
B
_
1
\wedge
B
_
1'
\ltdyn
B
_
2
\wedge
B
_
2'
}
\inferrule
{
\Gamma\pipe\Delta
\vdash
M :
\u
B
\and
\Gamma\pipe\Delta
\vdash
M' :
\u
B'
}
{
\Gamma\pipe
\Delta
\vdash
\pair
M
{
M'
}
:
\u
B
\wedge
\u
B'
}
\inferrule
{
\Phi\pipe\Psi
\vdash
M
_
1
\ltdyn
M
_
2 :
\u
B
_
1
\ltdyn
\u
B
_
2
\\
\Phi\pipe\Psi
\vdash
M
_
1'
\ltdyn
M
_
2' :
\u
B
_
1'
\ltdyn
\u
B
_
2'
}
{
\Phi\pipe
\Psi
\vdash
\pair
{
M
_
1
}
{
M
_
1'
}
\ltdyn
\pair
{
M
_
2
}
{
M
_
2'
}
:
\u
B
_
1
\wedge
\u
B
_
1'
\ltdyn
\u
B
_
2
\wedge
\u
B
_
2'
}
\inferrule
{
\Gamma
\pipe
\Delta
\vdash
M :
\u
B
\wedge
\u
B'
}
{
\Gamma
\pipe
\Delta
\vdash
\pi
M :
\u
B
}
\begin{figure}
\inferrule
{
\Gamma
\pipe
\Delta
\vdash
M :
\u
B
\wedge
\u
B'
}
{
\Gamma
\pipe
\Delta
\vdash
\pi
' M :
\u
B'
}
\inferrule
{
\Phi
\pipe
\Psi
\vdash
M
_
1
\ltdyn
M
_
2 :
\u
B
_
1
\wedge
\u
B
_
1'
\ltdyn
\u
B
_
2
\wedge
\u
B
_
2'
\and
\u
B
_
1
\ltdyn
\u
B
_
2
\and
\u
B
_
1'
\ltdyn
\u
B
_
2'
}
{
\Phi
\pipe
\Psi
\vdash
\pi
M
_
1
\ltdyn
\pi
M
_
2 :
\u
B
_
1
\ltdyn
\u
B
_
2
}
\inferrule
{
\Phi
\pipe
\Psi
\vdash
M
_
1
\ltdyn
M
_
2 :
\u
B
_
1
\wedge
\u
B
_
1'
\ltdyn
\u
B
_
2
\wedge
\u
B
_
2'
\and
\u
B
_
1
\ltdyn
\u
B
_
2
\and
\u
B
_
1'
\ltdyn
\u
B
_
2'
}
{
\Phi
\pipe
\Psi
\vdash
\pi
' M
_
1
\ltdyn
\pi
' M
_
2 :
\u
B
_
1
\ltdyn
\u
B
_
2
}
\pi
\pair
M
{
M'
}
\equidyn
M
\and
\pi
'
\pair
M
{
M'
}
\equidyn
M'
\\
\inferrule
{
M :
\u
B
\wedge
\u
B'
}
{
M
\equidyn
\pair
{
\pi
M
}{
\pi
' M
}}
\end{mathpar}
\caption
{
Binary Computation Product
}
\end{figure}
\begin{figure}
[H]
\begin{mathpar}
\upcast
{
A
_
1 + A
_
1'
}{
A
_
2 + A
_
2'
}
x
_{
+,1
}
\equidyn\\
\case
x
_{
+,1
}
\{
\sigma
x
\mapsto
\upcast
{
A
_
1
}
{
A
_
2
}
\pipe
\sigma
' x'
\mapsto
\upcast
{
A
_
1'
}
{
A
_
2'
}
\}\\
\dncast
{
\u
F(A
_
1 + A
_
1')
}{
\u
F(A
_
2 + A
_
2')
}
\bullet
\equidyn
\lett
x
_{
+,2
}
=
\bullet
;
\\
\case
x
_{
+,2
}
\{
\sigma
x
_
2
\mapsto
\dncast
{
\u
F A
_
1
}{
\u
F A
_
2
}
\ret
x
_
2
\pipe
\sigma
' x
_
2'
\mapsto
\dncast
{
\u
F A
_
1'
}{
\u
F A
_
2'
}
\ret
x
_
2'
\}
\dncast
{
\u
B
_
1
\wedge
\u
B
_
1'
}{
\u
B
_
2
\wedge
\u
B
_
2'
}
\bullet
\equidyn
\pair
{
\dncast
{
\u
B
_
1
}{
\u
B
_
2
}
\pi\bullet
}{
\dncast
{
\u
B
_
1'
}{
\u
B
_
2'
}
\pi
'
\bullet
}
\\
\upcast
{
U(
{
\u
B
_
1
\wedge
\u
B
_
1'
}
)
}{
U(
{
\u
B
_
2
\wedge
\u
B
_
2'
}
)
}
x
_{
\wedge
}
\equidyn\\
\pair
{
\force
\upcast
{
U
\u
B
_
1
}{
U
\u
B
_
2
}
\thunk
\pi\force
x
_{
\wedge
}}
{
\force
\upcast
{
U
\u
B
_
1'
}{
U
\u
B
_
2'
}
\thunk
\pi
'
\force
x
_{
\wedge
}}
\end{mathpar}
\caption
{
Binary Sum and Binary Computation Product Contract Uniqueness Theorems
}
\end{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{
A
\vtype
\and
\u
B
\ctype
}
...
...
@@ -609,7 +752,7 @@ We implement the appropriate casts and their adjoints as follows
\caption
{
Function Type
}
\end{figure}
\begin{figure}
\begin{figure}
[H]
\begin{mathpar}
\inferrule
{}
...
...
@@ -627,6 +770,58 @@ We implement the appropriate casts and their adjoints as follows
\caption
{
Function Contract Theorem, Proof
}
\end{figure}
\section
{
Models
}
A model of gcbpv consists of a preorder-enriched cbpv model with
specified interpretations of
$
\dynv
,
\dync
$
and the following
precision judgments. Note that we don't need
$
0
\ltdyn
\dynv
$
and
$
\top
\ltdyn
\dync
$
because those are uniquely determined by the
universal property.
\begin{mathpar}
1
\ltdyn
\dynv
\dynv
\times
\dynv
\ltdyn
\dynv
\dynv
+
\dynv
\ltdyn
\dynv
U
\dync
\ltdyn
\dynv\\
\dync
\wedge
\dync
\ltdyn
\dync
\dynv
\to
\dync
\ltdyn
\dync
\u
F
\dynv
\ltdyn
\dync
\end{mathpar}
Next, we will use poset CBPV as a metalanguage and compile GCBPV into
poset CBPV with recursive types.
\begin{mathpar}
\dynv
(X,
\u
Y) = 1 + (X
\times
X) + (X + X) + U
\u
Y
\dync
(X,
\u
Y) = (
\u
Y
\wedge
\u
Y)
\wedge
(X
\to
\u
Y)
\wedge
\u
F X
\dynv
=
\mu
X.
\dynv
(X,
\u
\mu
\u
Y.
\dync
(X,
\u
Y))
\dync
=
\mu
\u
Y.
\dync
(
\mu
X.
\dynv
(X,
\u
Y),
\u
Y)
\end{mathpar}
We call the cases of
$
\dynv
$
the ``tag types'' and abbreviate them
$
T
$
because they are the tags of the sum, and the cases of the
$
\dync
$
the
``message types'' and abbreviate them
$
\u
M
$
because they are the
possible messages of the ``coinductive'' dynamic type.
%
We implement the appropriate casts and their adjoints as follows
\[
\upcast
T
\dynv
x
=
\roll
\sigma
_
T x
\]
\[
\dncast
{
\u
F T
}
{
\u
F
\dynv
}
\hole
=
\lett
x
=
\hole
;
\case
\unroll
x
\{
\sigma
_
T y
\mapsto
y;
\sigma
_{
T'
}
y
\mapsto
\err
\}
\]
\[
\dncast
{
\u
M
}
\dync
\hole
=
\pi
_{
\u
M
}
\u
\unroll
\hole
\]
\[
\upcast
{
U
\u
M
}
{
U
\dync
}
x
=
\u
\roll
\thunk
[
\pi
_{
\u
M
}
\mapsto
\force
x;
\pi
_{
\u
M'
}
\mapsto
\err
]
\]
\end{document}
%% Local Variables:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment