Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
b3187909
Commit
b3187909
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Monoid-related definitions and constructions
parent
fa159fbb
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Cubical/Algebra/Monoid/More.agda
+232
-0
232 additions, 0 deletions
...izations/guarded-cubical/Cubical/Algebra/Monoid/More.agda
with
232 additions
and
0 deletions
formalizations/guarded-cubical/Cubical/Algebra/Monoid/More.agda
0 → 100644
+
232
−
0
View file @
b3187909
{-# OPTIONS --allow-unsolved-metas #-}
module Cubical.Algebra.Monoid.More where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Data.Nat hiding (_·_)
open import Cubical.Data.Unit
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.Semigroup.Base
open import Cubical.Algebra.CommMonoid.Base
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' ℓ'' : Level
open IsMonoidHom
-- Composition of monoid homomorphisms
_∘hom_ : {M : Monoid ℓ} {N : Monoid ℓ'} {P : Monoid ℓ''} ->
MonoidHom N P -> MonoidHom M N -> MonoidHom M P
g ∘hom f = fst g ∘ fst f ,
monoidequiv
((cong (fst g) (snd f .presε)) ∙ (snd g .presε))
λ m m' -> {!!}
-- Equality of monoid homomorphisms
eqMonoidHom : {M : Monoid ℓ} {N : Monoid ℓ'} ->
(f g : MonoidHom M N) ->
fst f ≡ fst g -> f ≡ g
eqMonoidHom = {!!}
isSetMonoid : (M : Monoid ℓ) -> isSet ⟨ M ⟩
isSetMonoid M = M .snd .isMonoid .isSemigroup .is-set
where
open MonoidStr
open IsMonoid
open IsSemigroup
monoidId : (M : Monoid ℓ) -> ⟨ M ⟩
monoidId M = M .snd .ε
where open MonoidStr
commMonoidId : (M : CommMonoid ℓ) -> ⟨ M ⟩
commMonoidId M = M .snd .ε
where open CommMonoidStr
_×M_ : Monoid ℓ -> Monoid ℓ' -> Monoid (ℓ-max ℓ ℓ')
M1 ×M M2 = makeMonoid
{M = ⟨ M1 ⟩ × ⟨ M2 ⟩}
(M1.ε , M2.ε)
(λ { (m1 , m2) (m1' , m2') -> (m1 M1.· m1') , (m2 M2.· m2') })
(isSet× M1.is-set M2.is-set)
(λ { (m1 , m2) (m1' , m2') (m1'' , m2'') ->
≡-× (M1.·Assoc m1 m1' m1'') (M2.·Assoc m2 m2' m2'') } )
(λ { (m1 , m2) -> ≡-× (M1.·IdR m1) (M2.·IdR m2) })
(λ { (m1 , m2) -> ≡-× (M1.·IdL m1) (M2.·IdL m2) })
where
open MonoidStr
open IsMonoid
open IsSemigroup
module M1 = MonoidStr (M1 .snd)
module M2 = MonoidStr (M2 .snd)
_·M1_ = M1 .snd ._·_
_·M2_ = M2 .snd ._·_
_×CM_ : CommMonoid ℓ -> CommMonoid ℓ' -> CommMonoid (ℓ-max ℓ ℓ')
M1 ×CM M2 = makeCommMonoid
{M = ⟨ M1 ⟩ × ⟨ M2 ⟩}
(commMonoidId M1 , commMonoidId M2)
(λ { (m1 , m2) (m1' , m2') -> (m1 ·M1 m1') , (m2 ·M2 m2')})
(isSet× (isSetCommMonoid M1) (isSetCommMonoid M2))
(λ { (m1 , m2) (m1' , m2') (m1'' , m2'') ->
≡-× (M1 .snd .isMonoid .isSemigroup .·Assoc m1 m1' m1'')
(M2 .snd .isMonoid .isSemigroup .·Assoc m2 m2' m2'') })
(λ { (m1 , m2) -> ≡-×
(M1 .snd .isMonoid .·IdR m1) ((M2 .snd .isMonoid .·IdR m2)) })
λ { (m1 , m2) (m1' , m2') -> ≡-×
(M1 .snd .·Comm m1 m1') (M2 .snd .·Comm m2 m2') }
where
open CommMonoidStr
open IsMonoid
open IsSemigroup
_·M1_ = M1 .snd ._·_
_·M2_ = M2 .snd ._·_
{-
CM→M-× : (M1 : CommMonoid ℓ) (M2 : CommMonoid ℓ') ->
(CommMonoid→Monoid (M1 ×CM M2)) ≡
(CommMonoid→Monoid M1 ×M CommMonoid→Monoid M2)
CM→M-× M1 M2 = equivFun (MonoidPath _ _) CM→M-×'
where
CM→M-×' :
MonoidEquiv
(CommMonoid→Monoid (M1 ×CM M2))
(CommMonoid→Monoid M1 ×M CommMonoid→Monoid M2)
CM→M-×' .fst = idEquiv ⟨ CommMonoid→Monoid (M1 ×CM M2) ⟩
CM→M-×' .snd .presε = refl
CM→M-×' .snd .pres· p p' = refl
-}
CM→M-× : (M1 : CommMonoid ℓ) (M2 : CommMonoid ℓ') ->
MonoidHom
(CommMonoid→Monoid (M1 ×CM M2))
(CommMonoid→Monoid M1 ×M CommMonoid→Monoid M2)
CM→M-× M1 M2 .fst x = x
CM→M-× M1 M2 .snd .presε = refl
CM→M-× M1 M2 .snd .pres· p p' = refl
-- "Product" of homomorphisms between two fixed monoids
_·hom_[_] : {M : Monoid ℓ} -> {N : Monoid ℓ'} ->
(f g : MonoidHom M N) ->
(commutes : ∀ x y ->
N .snd .MonoidStr._·_ (fst f y) (fst g x) ≡
N .snd .MonoidStr._·_ (fst g x) (fst f y)) ->
MonoidHom M N
_·hom_[_] {M = M} {N = N} f g commutes =
(λ a -> fst f a ·N fst g a) ,
monoidequiv
-- (f ε_M) ·N (g ε_M) = ε_N
((λ i -> (f .snd .presε i) ·N (g .snd .presε i)) ∙
(N .snd .isMonoid .·IdR (N .snd .ε)))
-- f (x ·M y) ·N g (x ·M y) = ((f x) ·N (g x)) ·N ((f y) ·N (g y))
pres-mult
where
open MonoidStr
open IsSemigroup
open IsMonoid
open IsMonoidHom
_·M_ = M .snd ._·_
_·N_ = N .snd ._·_
f-fun : ⟨ M ⟩ → ⟨ N ⟩
f-fun = fst f
g-fun : ⟨ M ⟩ → ⟨ N ⟩
g-fun = fst g
N-assoc : (x y z : ⟨ N ⟩) → x ·N (y ·N z) ≡ (x ·N y) ·N z
N-assoc = N .snd .isMonoid .isSemigroup .·Assoc
pres-mult : (x y : fst M) →
(fst f ((M .snd · x) y) ·N fst g ((M .snd · x) y)) ≡
(N .snd · (fst f x ·N fst g x)) (fst f y ·N fst g y)
pres-mult x y =
(f-fun (x ·M y) ·N g-fun (x ·M y))
≡⟨ (λ i → f .snd .pres· x y i ·N g .snd .pres· x y i) ⟩
((f-fun x ·N f-fun y) ·N (g-fun x ·N g-fun y))
≡⟨ (N-assoc (f-fun x ·N f-fun y) (g-fun x) (g-fun y)) ⟩
(((f-fun x ·N f-fun y) ·N g-fun x) ·N g-fun y)
≡⟨ (λ i -> (sym (N-assoc (f-fun x) (f-fun y) (g-fun x)) i) ·N g-fun y) ⟩
((f-fun x ·N ((f-fun y ·N g-fun x))) ·N g-fun y)
≡⟨ ((λ i -> (f-fun x ·N commutes x y i) ·N g-fun y)) ⟩
((f-fun x ·N ((g-fun x ·N f-fun y))) ·N g-fun y)
≡⟨ ((λ i -> (N-assoc (f-fun x) (g-fun x) (f-fun y) i) ·N g-fun y)) ⟩
(((f-fun x ·N g-fun x) ·N f-fun y) ·N g-fun y)
≡⟨ sym (N-assoc (f-fun x ·N g-fun x) (f-fun y) (g-fun y)) ⟩
((f-fun x ·N g-fun x)) ·N (f-fun y ·N g-fun y) ∎
-- Extending the domain of a homomorphism, i.e.
-- If f is a homomorphism from N to P, then f is also
-- a homomorphism from M ×M N to P for any monoid M
extend-domain-l : {N : Monoid ℓ} {P : Monoid ℓ''} ->
(M : Monoid ℓ') (f : MonoidHom N P) ->
MonoidHom (M ×M N) P
extend-domain-l M f .fst (m , n) = f .fst n
extend-domain-l M f .snd .presε = f.presε
where module f = IsMonoidHom (f .snd)
extend-domain-l M f .snd .pres· (m , n) (m' , n') = f.pres· n n'
where module f = IsMonoidHom (f .snd)
-- This could be defined by composing extend-domain-l
-- with the "swap" homomorphism
extend-domain-r : {M : Monoid ℓ} {P : Monoid ℓ''} ->
(N : Monoid ℓ') (f : MonoidHom M P) ->
MonoidHom (M ×M N) P
extend-domain-r N f .fst (m , n) = f .fst m
extend-domain-r N f .snd .presε = f.presε
where module f = IsMonoidHom (f .snd)
extend-domain-r N f .snd .pres· (m , n) (m' , n') = f.pres· m m'
where module f = IsMonoidHom (f .snd)
-- Monoid of natural numbers with addition
nat-monoid : CommMonoid ℓ-zero
nat-monoid = makeCommMonoid {M = ℕ} zero _+_ isSetℕ +-assoc +-zero +-comm
-- Trivial monoid
trivial-monoid : CommMonoid ℓ-zero
trivial-monoid = makeCommMonoid
tt (λ _ _ -> tt) isSetUnit (λ _ _ _ -> refl) (λ _ -> refl) (λ _ _ -> refl)
-- (unique) homomorphism out of the trivial monoid
trivial-monoid-hom : (M : Monoid ℓ) ->
MonoidHom (CommMonoid→Monoid trivial-monoid) M
trivial-monoid-hom M .fst tt = ε
where open MonoidStr (M .snd)
trivial-monoid-hom M .snd .presε = refl
trivial-monoid-hom M .snd .pres· tt tt = sym (·IdR ε)
where open MonoidStr (M .snd)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment