Skip to content
Snippets Groups Projects
Commit aff6ae2a authored by Eric Giovannini's avatar Eric Giovannini
Browse files

Dyn as a Poset

parent c9e2ec0c
Branches
No related tags found
No related merge requests found
{-# OPTIONS --rewriting --guarded #-}
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
open import Common.Later
module Semantics.Concrete.Dyn (k : Clock) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Binary
open import Cubical.Data.Nat renaming (ℕ to Nat)
open import Cubical.Data.Sum
open import Cubical.Data.Unit
open import Cubical.Data.Empty
open import Common.LaterProperties
--open import Common.Preorder.Base
--open import Common.Preorder.Monotone
--open import Common.Preorder.Constructions
open import Semantics.Lift k
-- open import Semantics.Concrete.LiftPreorder k
open import Cubical.Relation.Binary.Poset
open import Common.Poset.Convenience
open import Common.Poset.Constructions
open import Common.Poset.Monotone
open import Semantics.LockStepErrorOrdering k
open BinaryRelation
open LiftPoset
private
variable
ℓ ℓ' : Level
▹_ : Type ℓ → Type ℓ
▹_ A = ▹_,_ k A
data Dyn' (D : ▹ Poset ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
nat : Nat -> Dyn' D
fun : ▸ (λ t → MonFun (D t) (𝕃 (D t))) -> Dyn' D
Dyn'-iso : (D : ▹ Poset ℓ ℓ') -> Iso (Dyn' D) (Nat ⊎ (▸ (λ t → MonFun (D t) (𝕃 (D t)))))
Dyn'-iso D = iso
(λ { (nat n) → inl n ; (fun f~) → inr f~})
(λ { (inl n) → nat n ; (inr f~) → fun f~})
(λ { (inl n) → refl ; (inr f~) → refl})
(λ { (nat x) → refl ; (fun x) → refl})
DynP' :
(D : ▹ Poset ℓ-zero ℓ-zero) -> Poset ℓ-zero ℓ-zero
DynP' D = Dyn' D ,
posetstr order
(isposet isSetDynP' dyn-ord-prop dyn-ord-refl dyn-ord-trans dyn-ord-antisym)
where
order : Dyn' D → Dyn' D → Type
order (nat n) (nat m) = (n ≡ m)
order (fun f~) (fun g~) = ▸ λ t → (f~ t) ≤mon (g~ t)
order _ _ = ⊥
isSetDynP' : isSet (Dyn' D)
isSetDynP' = isSetRetract
(Iso.fun (Dyn'-iso D)) (Iso.inv (Dyn'-iso D)) (Iso.leftInv (Dyn'-iso D))
(isSet⊎ isSetℕ (isSet▸ λ t -> MonFunIsSet))
dyn-ord-refl : isRefl order
dyn-ord-refl (nat n) = refl
dyn-ord-refl (fun f~) = λ t → ≤mon-refl (f~ t)
dyn-ord-prop : isPropValued order
dyn-ord-prop (nat n) (nat m) = isSetℕ n m
dyn-ord-prop (fun f~) (fun g~) = isProp▸ (λ t -> ≤mon-prop (f~ t) (g~ t))
dyn-ord-trans : isTrans order
dyn-ord-trans (nat n1) (nat n2) (nat n3) n1≡n2 n2≡n3 =
n1≡n2 ∙ n2≡n3
dyn-ord-trans (fun f1~) (fun f2~) (fun f3~) H1 H2 =
λ t → ≤mon-trans (f1~ t) (f2~ t) (f3~ t) (H1 t) (H2 t)
dyn-ord-antisym : isAntisym order
dyn-ord-antisym (nat n) (nat m) n≡m m≡n = cong nat n≡m
dyn-ord-antisym (fun f~) (fun g~) d≤d' d'≤d =
cong fun (eq▸ f~ g~ λ t -> ≤mon-antisym (f~ t) (g~ t) (d≤d' t) (d'≤d t))
DynP : Poset ℓ-zero ℓ-zero
DynP = fix DynP'
unfold-DynP : DynP ≡ DynP' (next DynP)
unfold-DynP = fix-eq DynP'
unfold-⟨DynP⟩ : ⟨ DynP ⟩ ≡ ⟨ DynP' (next DynP) ⟩
unfold-⟨DynP⟩ = λ i → ⟨ unfold-DynP i ⟩
unfold-DynP-rel : PathP (λ i -> {!lift (unfold-⟨DynP⟩ i)!}) (rel DynP) (rel (DynP' (next DynP)))
unfold-DynP-rel = {!!}
-- Converting from the underlying set of DynP' to the underlying
-- set of DynP
DynP'→DynP : ⟨ DynP' (next DynP) ⟩ -> ⟨ DynP ⟩
DynP'→DynP d = transport (sym (λ i -> ⟨ unfold-DynP i ⟩)) d
DynP→DynP' : ⟨ DynP ⟩ -> ⟨ DynP' (next DynP) ⟩
DynP→DynP' d = transport (λ i → ⟨ unfold-DynP i ⟩) d
rel-DynP'→rel-DynP : ∀ d1 d2 ->
rel (DynP' (next DynP)) d1 d2 ->
rel DynP (DynP'→DynP d1) (DynP'→DynP d2)
rel-DynP'→rel-DynP d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP (~ i))
(transport-filler (λ j → ⟨ unfold-DynP (~ j) ⟩) d1 i)
(transport-filler (λ j → ⟨ unfold-DynP (~ j) ⟩) d2 i))
d1≤d2
rel-DynP→rel-DynP' : ∀ d1 d2 ->
rel DynP d1 d2 ->
rel (DynP' (next DynP)) (DynP→DynP' d1) (DynP→DynP' d2)
rel-DynP→rel-DynP' d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d1 i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d2 i))
d1≤d2
DynP-equiv : PosetEquiv DynP (DynP' (next DynP))
DynP-equiv = pathToEquiv unfold-⟨DynP⟩ ,
makeIsPosetEquiv (pathToEquiv unfold-⟨DynP⟩)
(λ d1 d2 d1≤d2 -> rel-DynP→rel-DynP' d1 d2 d1≤d2)
(λ d1 d2 d1≤d2 -> {!rel-DynP'→rel-DynP d1 d2 d1≤d2!})
InjNat : ⟨ ℕ ==> DynP ⟩
InjNat = record {
f = λ n -> DynP'→DynP (nat n) ;
isMon = λ {n} {m} n≡m ->
rel-DynP'→rel-DynP (nat n) (nat m) n≡m }
InjArr : ⟨ (DynP ==> 𝕃 DynP) ==> DynP ⟩
InjArr = record {
f = λ f -> DynP'→DynP (fun (next f)) ;
isMon = λ {f1} {f2} f1≤f2 ->
rel-DynP'→rel-DynP (fun (next f1)) (fun (next f2)) λ t -> f1≤f2 }
{-
-- Poset Structure on Dyn
module DynPoset (ℓ ℓ' : Level) where
DynP' :
(D : ▹ Poset ℓ ℓ') -> Poset (ℓ-max ℓ ℓ') (ℓ-max ℓ ℓ')
DynP' D = Dyn' D ,
posetstr order
(isposet isSetDynP' dyn-ord-prop dyn-ord-refl dyn-ord-trans dyn-ord-antisym)
where
order : Dyn' D → Dyn' D → Type (ℓ-max ℓ ℓ')
order (nat n) (nat m) = Lift (n ≡ m)
order (fun f~) (fun g~) = ▸ λ t → (f~ t) ≤mon (g~ t)
order _ _ = ⊥*
isSetDynP' : isSet (Dyn' D)
isSetDynP' = isSetRetract
(Iso.fun (Dyn'-iso D)) (Iso.inv (Dyn'-iso D)) (Iso.leftInv (Dyn'-iso D))
(isSet⊎ isSetℕ (isSet▸ λ t -> MonFunIsSet))
dyn-ord-refl : isRefl order
dyn-ord-refl (nat n) = lift refl
dyn-ord-refl (fun f~) = λ t → ≤mon-refl (f~ t)
dyn-ord-prop : isPropValued order
dyn-ord-prop (nat n) (nat m) = isOfHLevelLift 1 (isSetℕ n m)
dyn-ord-prop (fun f~) (fun g~) = isProp▸ (λ t -> ≤mon-prop (f~ t) (g~ t))
dyn-ord-trans : isTrans order
dyn-ord-trans (nat n1) (nat n2) (nat n3) (lift n1≡n2) (lift n2≡n3) =
lift (n1≡n2 ∙ n2≡n3)
dyn-ord-trans (fun f1~) (fun f2~) (fun f3~) H1 H2 =
λ t → ≤mon-trans (f1~ t) (f2~ t) (f3~ t) (H1 t) (H2 t)
dyn-ord-antisym : isAntisym order
dyn-ord-antisym (nat n) (nat m) (lift n≡m) (lift m≡n) = cong nat n≡m
dyn-ord-antisym (fun f~) (fun g~) d≤d' d'≤d =
cong fun (eq▸ f~ g~ λ t -> ≤mon-antisym (f~ t) (g~ t) (d≤d' t) (d'≤d t))
DynP : Poset ? ?
DynP = fix DynP'
unfold-DynP : DynP ≡ DynP' (next DynP)
unfold-DynP = fix-eq DynP'
unfold-⟨DynP⟩ : {ℓ ℓ' : Level} -> ⟨ DynP ⟩ ≡ ⟨ DynP' (next (DynP {ℓ} {ℓ'})) ⟩
unfold-⟨DynP⟩ {ℓ} {ℓ'} = λ i → ⟨ unfold-DynP {ℓ} {ℓ'} i ⟩
-- Converting from the underlying set of DynP' to the underlying
-- set of DynP
DynP'→DynP : ⟨ DynP' (next DynP) ⟩ -> ⟨ DynP ⟩
DynP'→DynP d = transport (sym (λ i -> ⟨ unfold-DynP i ⟩)) d
DynP→DynP' : ⟨ DynP ⟩ -> ⟨ DynP' (next DynP) ⟩
DynP→DynP' d = transport (λ i → ⟨ unfold-DynP i ⟩) d
DynP-rel : ∀ d1 d2 ->
rel (DynP' (next DynP)) d1 d2 ->
rel DynP (DynP'→DynP d1) (DynP'→DynP d2)
DynP-rel d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP (~ i))
(transport-filler (λ j -> ⟨ unfold-DynP (~ j) ⟩) d1 i)
(transport-filler (λ j -> ⟨ unfold-DynP (~ j) ⟩) d2 i))
d1≤d2
DynP'-rel : ∀ d1 d2 ->
rel DynP d1 d2 ->
rel (DynP' (next DynP)) (DynP→DynP' d1) (DynP→DynP' d2)
DynP'-rel d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d1 i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d2 i))
d1≤d2
-}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment