Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
aff6ae2a
Commit
aff6ae2a
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Dyn as a Poset
parent
c9e2ec0c
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Semantics/Concrete/Dyn.agda
+250
-0
250 additions, 0 deletions
formalizations/guarded-cubical/Semantics/Concrete/Dyn.agda
with
250 additions
and
0 deletions
formalizations/guarded-cubical/Semantics/Concrete/Dyn.agda
0 → 100644
+
250
−
0
View file @
aff6ae2a
{-# OPTIONS --rewriting --guarded #-}
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
open import Common.Later
module Semantics.Concrete.Dyn (k : Clock) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Binary
open import Cubical.Data.Nat renaming (ℕ to Nat)
open import Cubical.Data.Sum
open import Cubical.Data.Unit
open import Cubical.Data.Empty
open import Common.LaterProperties
--open import Common.Preorder.Base
--open import Common.Preorder.Monotone
--open import Common.Preorder.Constructions
open import Semantics.Lift k
-- open import Semantics.Concrete.LiftPreorder k
open import Cubical.Relation.Binary.Poset
open import Common.Poset.Convenience
open import Common.Poset.Constructions
open import Common.Poset.Monotone
open import Semantics.LockStepErrorOrdering k
open BinaryRelation
open LiftPoset
private
variable
ℓ ℓ' : Level
▹_ : Type ℓ → Type ℓ
▹_ A = ▹_,_ k A
data Dyn' (D : ▹ Poset ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
nat : Nat -> Dyn' D
fun : ▸ (λ t → MonFun (D t) (𝕃 (D t))) -> Dyn' D
Dyn'-iso : (D : ▹ Poset ℓ ℓ') -> Iso (Dyn' D) (Nat ⊎ (▸ (λ t → MonFun (D t) (𝕃 (D t)))))
Dyn'-iso D = iso
(λ { (nat n) → inl n ; (fun f~) → inr f~})
(λ { (inl n) → nat n ; (inr f~) → fun f~})
(λ { (inl n) → refl ; (inr f~) → refl})
(λ { (nat x) → refl ; (fun x) → refl})
DynP' :
(D : ▹ Poset ℓ-zero ℓ-zero) -> Poset ℓ-zero ℓ-zero
DynP' D = Dyn' D ,
posetstr order
(isposet isSetDynP' dyn-ord-prop dyn-ord-refl dyn-ord-trans dyn-ord-antisym)
where
order : Dyn' D → Dyn' D → Type
order (nat n) (nat m) = (n ≡ m)
order (fun f~) (fun g~) = ▸ λ t → (f~ t) ≤mon (g~ t)
order _ _ = ⊥
isSetDynP' : isSet (Dyn' D)
isSetDynP' = isSetRetract
(Iso.fun (Dyn'-iso D)) (Iso.inv (Dyn'-iso D)) (Iso.leftInv (Dyn'-iso D))
(isSet⊎ isSetℕ (isSet▸ λ t -> MonFunIsSet))
dyn-ord-refl : isRefl order
dyn-ord-refl (nat n) = refl
dyn-ord-refl (fun f~) = λ t → ≤mon-refl (f~ t)
dyn-ord-prop : isPropValued order
dyn-ord-prop (nat n) (nat m) = isSetℕ n m
dyn-ord-prop (fun f~) (fun g~) = isProp▸ (λ t -> ≤mon-prop (f~ t) (g~ t))
dyn-ord-trans : isTrans order
dyn-ord-trans (nat n1) (nat n2) (nat n3) n1≡n2 n2≡n3 =
n1≡n2 ∙ n2≡n3
dyn-ord-trans (fun f1~) (fun f2~) (fun f3~) H1 H2 =
λ t → ≤mon-trans (f1~ t) (f2~ t) (f3~ t) (H1 t) (H2 t)
dyn-ord-antisym : isAntisym order
dyn-ord-antisym (nat n) (nat m) n≡m m≡n = cong nat n≡m
dyn-ord-antisym (fun f~) (fun g~) d≤d' d'≤d =
cong fun (eq▸ f~ g~ λ t -> ≤mon-antisym (f~ t) (g~ t) (d≤d' t) (d'≤d t))
DynP : Poset ℓ-zero ℓ-zero
DynP = fix DynP'
unfold-DynP : DynP ≡ DynP' (next DynP)
unfold-DynP = fix-eq DynP'
unfold-⟨DynP⟩ : ⟨ DynP ⟩ ≡ ⟨ DynP' (next DynP) ⟩
unfold-⟨DynP⟩ = λ i → ⟨ unfold-DynP i ⟩
unfold-DynP-rel : PathP (λ i -> {!lift (unfold-⟨DynP⟩ i)!}) (rel DynP) (rel (DynP' (next DynP)))
unfold-DynP-rel = {!!}
-- Converting from the underlying set of DynP' to the underlying
-- set of DynP
DynP'→DynP : ⟨ DynP' (next DynP) ⟩ -> ⟨ DynP ⟩
DynP'→DynP d = transport (sym (λ i -> ⟨ unfold-DynP i ⟩)) d
DynP→DynP' : ⟨ DynP ⟩ -> ⟨ DynP' (next DynP) ⟩
DynP→DynP' d = transport (λ i → ⟨ unfold-DynP i ⟩) d
rel-DynP'→rel-DynP : ∀ d1 d2 ->
rel (DynP' (next DynP)) d1 d2 ->
rel DynP (DynP'→DynP d1) (DynP'→DynP d2)
rel-DynP'→rel-DynP d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP (~ i))
(transport-filler (λ j → ⟨ unfold-DynP (~ j) ⟩) d1 i)
(transport-filler (λ j → ⟨ unfold-DynP (~ j) ⟩) d2 i))
d1≤d2
rel-DynP→rel-DynP' : ∀ d1 d2 ->
rel DynP d1 d2 ->
rel (DynP' (next DynP)) (DynP→DynP' d1) (DynP→DynP' d2)
rel-DynP→rel-DynP' d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d1 i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d2 i))
d1≤d2
DynP-equiv : PosetEquiv DynP (DynP' (next DynP))
DynP-equiv = pathToEquiv unfold-⟨DynP⟩ ,
makeIsPosetEquiv (pathToEquiv unfold-⟨DynP⟩)
(λ d1 d2 d1≤d2 -> rel-DynP→rel-DynP' d1 d2 d1≤d2)
(λ d1 d2 d1≤d2 -> {!rel-DynP'→rel-DynP d1 d2 d1≤d2!})
InjNat : ⟨ ℕ ==> DynP ⟩
InjNat = record {
f = λ n -> DynP'→DynP (nat n) ;
isMon = λ {n} {m} n≡m ->
rel-DynP'→rel-DynP (nat n) (nat m) n≡m }
InjArr : ⟨ (DynP ==> 𝕃 DynP) ==> DynP ⟩
InjArr = record {
f = λ f -> DynP'→DynP (fun (next f)) ;
isMon = λ {f1} {f2} f1≤f2 ->
rel-DynP'→rel-DynP (fun (next f1)) (fun (next f2)) λ t -> f1≤f2 }
{-
-- Poset Structure on Dyn
module DynPoset (ℓ ℓ' : Level) where
DynP' :
(D : ▹ Poset ℓ ℓ') -> Poset (ℓ-max ℓ ℓ') (ℓ-max ℓ ℓ')
DynP' D = Dyn' D ,
posetstr order
(isposet isSetDynP' dyn-ord-prop dyn-ord-refl dyn-ord-trans dyn-ord-antisym)
where
order : Dyn' D → Dyn' D → Type (ℓ-max ℓ ℓ')
order (nat n) (nat m) = Lift (n ≡ m)
order (fun f~) (fun g~) = ▸ λ t → (f~ t) ≤mon (g~ t)
order _ _ = ⊥*
isSetDynP' : isSet (Dyn' D)
isSetDynP' = isSetRetract
(Iso.fun (Dyn'-iso D)) (Iso.inv (Dyn'-iso D)) (Iso.leftInv (Dyn'-iso D))
(isSet⊎ isSetℕ (isSet▸ λ t -> MonFunIsSet))
dyn-ord-refl : isRefl order
dyn-ord-refl (nat n) = lift refl
dyn-ord-refl (fun f~) = λ t → ≤mon-refl (f~ t)
dyn-ord-prop : isPropValued order
dyn-ord-prop (nat n) (nat m) = isOfHLevelLift 1 (isSetℕ n m)
dyn-ord-prop (fun f~) (fun g~) = isProp▸ (λ t -> ≤mon-prop (f~ t) (g~ t))
dyn-ord-trans : isTrans order
dyn-ord-trans (nat n1) (nat n2) (nat n3) (lift n1≡n2) (lift n2≡n3) =
lift (n1≡n2 ∙ n2≡n3)
dyn-ord-trans (fun f1~) (fun f2~) (fun f3~) H1 H2 =
λ t → ≤mon-trans (f1~ t) (f2~ t) (f3~ t) (H1 t) (H2 t)
dyn-ord-antisym : isAntisym order
dyn-ord-antisym (nat n) (nat m) (lift n≡m) (lift m≡n) = cong nat n≡m
dyn-ord-antisym (fun f~) (fun g~) d≤d' d'≤d =
cong fun (eq▸ f~ g~ λ t -> ≤mon-antisym (f~ t) (g~ t) (d≤d' t) (d'≤d t))
DynP : Poset ? ?
DynP = fix DynP'
unfold-DynP : DynP ≡ DynP' (next DynP)
unfold-DynP = fix-eq DynP'
unfold-⟨DynP⟩ : {ℓ ℓ' : Level} -> ⟨ DynP ⟩ ≡ ⟨ DynP' (next (DynP {ℓ} {ℓ'})) ⟩
unfold-⟨DynP⟩ {ℓ} {ℓ'} = λ i → ⟨ unfold-DynP {ℓ} {ℓ'} i ⟩
-- Converting from the underlying set of DynP' to the underlying
-- set of DynP
DynP'→DynP : ⟨ DynP' (next DynP) ⟩ -> ⟨ DynP ⟩
DynP'→DynP d = transport (sym (λ i -> ⟨ unfold-DynP i ⟩)) d
DynP→DynP' : ⟨ DynP ⟩ -> ⟨ DynP' (next DynP) ⟩
DynP→DynP' d = transport (λ i → ⟨ unfold-DynP i ⟩) d
DynP-rel : ∀ d1 d2 ->
rel (DynP' (next DynP)) d1 d2 ->
rel DynP (DynP'→DynP d1) (DynP'→DynP d2)
DynP-rel d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP (~ i))
(transport-filler (λ j -> ⟨ unfold-DynP (~ j) ⟩) d1 i)
(transport-filler (λ j -> ⟨ unfold-DynP (~ j) ⟩) d2 i))
d1≤d2
DynP'-rel : ∀ d1 d2 ->
rel DynP d1 d2 ->
rel (DynP' (next DynP)) (DynP→DynP' d1) (DynP→DynP' d2)
DynP'-rel d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d1 i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d2 i))
d1≤d2
-}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment