Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
aff372a6
Commit
aff372a6
authored
1 year ago
by
akai
Browse files
Options
Downloads
Patches
Plain Diff
add new file: PosetWithPtb
parent
6fac2c54
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Semantics/Concrete/PosetWithPtb.agda
+233
-0
233 additions, 0 deletions
...ions/guarded-cubical/Semantics/Concrete/PosetWithPtb.agda
with
233 additions
and
0 deletions
formalizations/guarded-cubical/Semantics/Concrete/PosetWithPtb.agda
0 → 100644
+
233
−
0
View file @
aff372a6
{-# OPTIONS --rewriting --guarded #-}
{-# OPTIONS --allow-unsolved-metas #-}
open import Common.Later
module Semantics.Concrete.PosetWithPtb (k : Clock) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Reflection.RecordEquiv
open import Cubical.Relation.Binary.Poset
open import Cubical.HITs.PropositionalTruncation
open import Cubical.HigherCategories.ThinDoubleCategory.ThinDoubleCat
-- open import Cubical.HigherCategories.ThinDoubleCategory.Constructions.BinProduct
open import Cubical.Foundations.Function
open import Cubical.Algebra.Monoid.Base
open import Cubical.Algebra.Semigroup.Base
open import Cubical.Data.Sigma
open import Cubical.Data.Nat renaming (ℕ to Nat) hiding (_·_ ; _^_)
open import Cubical.Categories.Category.Base
open import Common.Common
open import Semantics.Lift k
open import Semantics.LockStepErrorOrdering k
open import Semantics.Concrete.DynNew k
open import Common.Poset.Convenience
open import Common.Poset.Constructions
open import Common.Poset.Monotone
open import Common.Poset.MonotoneRelation
open import Semantics.MonotoneCombinators
-- open import Semantics.Abstract.Model.Model
-- open Model
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
▹_ : Type ℓ -> Type ℓ
▹ A = ▹_,_ k A
isSetMonoid : (M : Monoid ℓ) -> isSet ⟨ M ⟩
isSetMonoid M = M .snd .isMonoid .isSemigroup .is-set
where
open MonoidStr
open IsMonoid
open IsSemigroup
monoidId : (M : Monoid ℓ) -> ⟨ M ⟩
monoidId M = M .snd .ε
where open MonoidStr
_×M_ : Monoid ℓ -> Monoid ℓ' -> Monoid (ℓ-max ℓ ℓ')
M1 ×M M2 = makeMonoid
{M = ⟨ M1 ⟩ × ⟨ M2 ⟩}
(monoidId M1 , monoidId M2)
(λ { (m1 , m2) (m1' , m2') -> (m1 ·M1 m1') , (m2 ·M2 m2') })
(isSet× (isSetMonoid M1) (isSetMonoid M2))
(λ { (m1 , m2) (m1' , m2') (m1'' , m2'') →
≡-× (M1 .snd .isMonoid .isSemigroup .·Assoc m1 m1' m1'') ((M2 .snd .isMonoid .isSemigroup .·Assoc m2 m2' m2'')) })
(λ { (m1 , m2) -> ≡-× (M1 .snd .isMonoid .·IdR m1) ((M2 .snd .isMonoid .·IdR m2)) })
(λ { (m1 , m2) -> ≡-× (M1 .snd .isMonoid .·IdL m1) ((M2 .snd .isMonoid .·IdL m2)) })
where
open MonoidStr
open IsMonoid
open IsSemigroup
_·M1_ = M1 .snd ._·_
_·M2_ = M2 .snd ._·_
-- Monoid of all monotone endofunctions on a poset
EndoMonFun : (X : Poset ℓ ℓ') -> Monoid (ℓ-max ℓ ℓ')
EndoMonFun X = makeMonoid {M = MonFun X X} Id mCompU MonFunIsSet
(λ f g h -> eqMon _ _ refl) (λ f -> eqMon _ _ refl) (λ f -> eqMon _ _ refl)
--
-- A poset along with a monoid of monotone perturbation functions
--
record PosetWithPtb (ℓ ℓ' ℓ'' : Level) : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max (ℓ-suc ℓ') (ℓ-suc ℓ''))) where
field
P : Poset ℓ ℓ'
Perturb : Monoid ℓ''
perturb : MonoidHom Perturb (EndoMonFun P)
--TODO: needs to be injective map
-- Perturb : ⟨ EndoMonFun P ⟩
ptb-fun : ⟨ Perturb ⟩ -> ⟨ EndoMonFun P ⟩
ptb-fun = perturb .fst
open PosetWithPtb
_==>PWP_ : PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb (ℓ-max ℓ ℓ') (ℓ-max ℓ ℓ') ℓ''
A ==>PWP B = record {
P = (A .P) ==> (B .P) ;
Perturb = A .Perturb ×M B .Perturb ;
perturb =
(λ { (δᴬ , δᴮ) -> ptb-fun A δᴬ ~-> ptb-fun B δᴮ }) ,
monoidequiv (eqMon _ _ (funExt (λ g -> let pfA = cong (MonFun.f) (perturb A .snd .presε) in
let pfB = cong (MonFun.f) (perturb B .snd .presε) in
eqMon _ _ λ i -> pfB i ∘ MonFun.f g ∘ pfA i)))
(λ ma mb → {!!}) }
where
open IsMonoidHom
-- Monoid of natural numbers with addition
nat-monoid : Monoid ℓ-zero
nat-monoid = makeMonoid {M = Nat} zero _+_ isSetℕ +-assoc +-zero (λ x -> refl)
open ClockedCombinators k
𝕃PWP : PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb ℓ ℓ' ℓ''
𝕃PWP A = record {
P = LiftPoset.𝕃 (A .P) ;
Perturb = nat-monoid ×M A .Perturb ;
perturb =
(λ ma → fix f' ma) ,
monoidequiv (eqMon (ptb-fun {!!} {!!}) MonId {!refl!}) {!!} }
where
MA = nat-monoid ×M A .Perturb
open LiftPoset
f' : ▹ (⟨ MA ⟩ -> MonFun (𝕃 (A .P)) (𝕃 (A .P))) ->
(⟨ MA ⟩ -> MonFun (𝕃 (A .P)) (𝕃 (A .P)))
f' rec (n , ma) = record {
f = λ { (η a) -> (δ ^ n) (η (MonFun.f (ptb-fun A ma) a)) ;
℧ -> (δ ^ n) ℧ ;
(θ la~) -> θ (λ t -> MonFun.f (rec t ((n , ma))) (la~ t))} ;
isMon = λ x → {!!} }
--MonFun A A' -> MonFun B B' -> MonFun (A × B) (A'× B')
_×PWP_ : PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb ℓ ℓ' ℓ'' -> PosetWithPtb ℓ (ℓ-max ℓ' ℓ') ℓ''
A ×PWP B = record {
P = (A .P) ×p (B .P) ;
Perturb = A .Perturb ×M B .Perturb ;
perturb =
(λ { (ma , mb) -> PairFun (mCompU (ptb-fun A ma) π1) (mCompU (ptb-fun B mb) π2) }),
monoidequiv
(eqMon (PairFun
(mCompU (perturb A .fst (A .Perturb .snd .MonoidStr.ε)) π1)
(mCompU (perturb B .fst (B .Perturb .snd .MonoidStr.ε)) π2)) Id (funExt (λ { (a , b) →
≡-× (funExt⁻ (cong MonFun.f (perturb A .snd .presε)) a)
(funExt⁻ (cong MonFun.f (perturb B .snd .presε)) b) })))
λ { (ma , mb) (ma' , mb') →
eqMon _ _
(funExt (λ { (a , b ) -> ≡-× (funExt⁻ (cong MonFun.f (perturb A .snd .pres· ma ma')) a)
(funExt⁻ (cong MonFun.f (perturb B .snd .pres· mb mb')) b) })) } -- λ { (ma , mb) (ma' , mb') → eqMon (ptb-fun {!? ×PWP ?!} {!!}) (mCompU (ptb-fun {!!} {!!}) (ptb-fun {!!} {!!})) {!!} }
}
where
open MonoidStr
open IsMonoidHom
{-
PairFun
(mCompU (perturb A .fst (A .Perturb .snd ._·_ ma ma')) π1)
(mCompU (perturb B .fst (B .Perturb .snd ._·_ mb mb')) π2)
≡
mCompU
(PairFun (mCompU (perturb A .fst ma) π1)
(mCompU (perturb B .fst mb) π2))
(PairFun (mCompU (perturb A .fst ma') π1)
(mCompU (perturb B .fst mb') π2))
—————————————————————————————————————————
-}
--
-- Monotone functions on Posets with Perturbations
--
PosetWithPtb-Vert : {ℓ ℓ' ℓ'' : Level} (P1 P2 : PosetWithPtb ℓ ℓ' ℓ'') -> Type {!!} -- (ℓ-max ℓ ℓ')
PosetWithPtb-Vert P1 P2 = MonFun (P1 .P) (P2 .P)
-- TODO should there be a condition on preserving the perturbations?
--
-- Monotone relations on Posets with Perturbations
--
record FillersFor {ℓ ℓ' ℓ'' ℓR : Level} (P1 P2 : PosetWithPtb ℓ ℓ' ℓ'') (R : MonRel (P1 .P) (P2 .P) ℓR) :
Type (ℓ-max (ℓ-max ℓ ℓ'') ℓR) where
open PosetWithPtb
field
fillerL-e : ∀ (δᴮ : ⟨ P2 .Perturb ⟩ ) ->
Σ[ δᴬ ∈ ⟨ P1 .Perturb ⟩ ]
TwoCell (R .MonRel.R) (R .MonRel.R)
(MonFun.f (ptb-fun P1 δᴬ)) (MonFun.f (ptb-fun P2 δᴮ))
fillerL-p : ∀ (δᴸᴮ : ⟨ 𝕃PWP P2 .Perturb ⟩ ) ->
Σ[ δᴸᴬ ∈ ⟨ 𝕃PWP P1 .Perturb ⟩ ]
TwoCell (LiftRelation._≾_ ⟨ P1 .P ⟩ ⟨ P2 .P ⟩ (R .MonRel.R))
(LiftRelation._≾_ ⟨ P1 .P ⟩ ⟨ P2 .P ⟩ (R .MonRel.R))
(MonFun.f (ptb-fun (𝕃PWP P1) δᴸᴬ)) (MonFun.f (ptb-fun (𝕃PWP P2) δᴸᴮ))
fillerR-e : ∀ (δᴬ : ⟨ P1 .Perturb ⟩) ->
Σ[ δᴮ ∈ ⟨ P2 .Perturb ⟩ ]
TwoCell (R .MonRel.R) (R .MonRel.R)
(MonFun.f (ptb-fun P1 δᴬ)) (MonFun.f (ptb-fun P2 δᴮ))
fillerR-p : ∀ (δᴸᴬ : ⟨ 𝕃PWP P1 .Perturb ⟩ ) ->
Σ[ δᴸᴮ ∈ ⟨ 𝕃PWP P2 .Perturb ⟩ ]
TwoCell (LiftRelation._≾_ ⟨ P1 .P ⟩ ⟨ P2 .P ⟩ (R .MonRel.R))
(LiftRelation._≾_ ⟨ P1 .P ⟩ ⟨ P2 .P ⟩ (R .MonRel.R))
(MonFun.f (ptb-fun (𝕃PWP P1) δᴸᴬ)) (MonFun.f (ptb-fun (𝕃PWP P2) δᴸᴮ))
-- TODO: Show this is a set by showing that the Sigma type it is iso to
-- is a set (ΣIsSet2ndProp)
unquoteDecl FillersForIsoΣ = declareRecordIsoΣ FillersForIsoΣ (quote (FillersFor))
FillersFor-Set : ∀ {ℓ ℓ' ℓ'' ℓR : Level} {P1 P2 : PosetWithPtb ℓ ℓ' ℓ''} {R : MonRel (P1 .P) (P2 .P) ℓR}->
isSet (FillersFor P1 P2 R)
FillersFor-Set {P1 = P1} {P2 = P2} {R = R} =
isSetRetract (Iso.fun FillersForIsoΣ) (Iso.inv FillersForIsoΣ) (Iso.leftInv FillersForIsoΣ) (
isSet× (isSetΠ (λ δᴮ → isSetΣSndProp (isSetMonoid (P1 .Perturb)) λ δᴬ → isPropTwoCell (R .MonRel.is-prop-valued)))
(isSet× (isSetΠ (λ δᴸᴮ → isSetΣSndProp (isSet× (isSetMonoid nat-monoid) (isSetMonoid (P1 .Perturb)))
λ δᴸᴬ → isPropTwoCell (LiftMonRel.ℝ (P1 .P) (P2 .P) R .MonRel.is-prop-valued)))
(isSet× (isSetΠ (λ δᴬ → isSetΣSndProp (isSetMonoid (P2 .Perturb)) (λ δᴮ → isPropTwoCell (R .MonRel.is-prop-valued))))
(isSetΠ (λ δᴸᴬ → isSetΣSndProp (isSet× (isSetMonoid nat-monoid) (isSetMonoid (P2 .Perturb)))
(λ δᴸᴮ → isPropTwoCell (LiftMonRel.ℝ (P1 .P) (P2 .P) R .MonRel.is-prop-valued)))))))
-- isSetΣSndProp ? ?
-- isSet× (isSetΠ ( λ δᴸᴮ → isSetΣSndProp (isSetΣ (isSetMonoid {!!}) λ x → {!!}) λ δᴸᴬ → isPropTwoCell {! R .MonRel.is-prop-valued!}))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment