Skip to content
Snippets Groups Projects
Commit 9966ab25 authored by Max New's avatar Max New
Browse files

finish the cbv to gtt proofs

parent e2ac53c8
No related branches found
No related tags found
No related merge requests found
......@@ -3980,7 +3980,7 @@ of the operational behavior of a standard Call-by-value cast calculus.
\begin{mathpar}
S[\letXbeYinZ V x N] \step S[N[V/x]]\and
S[(\lambda x:A. M)\,V] \step S[M[V/x]]\and
S[\pmpairWtoinZ V N] \step S[N]\and
S[\pmpairWtoinZ () N] \step S[N]\and
S[\pmpairWtoXYinZ {(V_1,V_2)} {x_1}{x_2} N] \step S[N[V_1/x_1][V_2/x_2]]\and
S[\caseofXthenYelseZ {\inl V}{x_1. N_1}{x_2. N_2}] \step S[N_1[V/x_1]]\and
S[\caseofXthenYelseZ {\inr V}{x_1. N_1}{x_2. N_2}] \step S[N_2[V/x_2]]\\\\
......@@ -4253,7 +4253,55 @@ of the operational behavior of a standard Call-by-value cast calculus.
First, we have the cases not involving casts, which are standard for
the embedding of call-by-value into call-by-push-value.
\begin{itemize}
\item TODO
\item $\letXbeYinZ V x N \step N[V/x]$
\begin{align*}
\cbvtocbpvcomp{(\letXbeYinZ V x N)}
&= \bindXtoYinZ {\cbvtocbpvcomp V} x {\cbvtocbpvcomp N}\\
&\equidyn \bindXtoYinZ {\ret\cbvtocbpvval V} x {\cbvtocbpvcomp N}\\
&\equidyn {\cbvtocbpvcomp N}[{\cbvtocbpvval V}/x]\\
&\equidyn {\cbvtocbpvcomp {(N[V/x]})}
\end{align*}
\item $(\lambda x:A. M)\,V \step M[V/x]$
\begin{align*}
\cbvtocbpvcomp{((\lambda x:A. M)\,V)}
&= \bindXtoYinZ {(\ret (\thunk (\lambda x:\cbvtocbpvty A. \cbvtocbpvcomp M)))} f
\bindXtoYinZ {\cbvtocbpvcomp V} x
\force f \, x\\
&\equidyn \bindXtoYinZ {\cbvtocbpvcomp V} x
\force (\thunk (\lambda x:\cbvtocbpvty A. \cbvtocbpvcomp M)) \, x\\
&\equidyn \bindXtoYinZ {\ret \cbvtocbpvval V} x
\force (\thunk (\lambda x:\cbvtocbpvty A. \cbvtocbpvcomp M)) \, x\\
&\equidyn \force (\thunk (\lambda x:\cbvtocbpvty A. \cbvtocbpvcomp M)) \,\cbvtocbpvval V\\
&\equidyn (\lambda x:\cbvtocbpvty A. \cbvtocbpvcomp M)\,\cbvtocbpvval V\\
&\equidyn \cbvtocbpvcomp M[\cbvtocbpvval V/x]\\
&\equidyn \cbvtocbpvcomp {(M[V/x])}
\end{align*}
\item $\pmpairWtoinZ {()} N \step N$
\begin{align*}
\cbvtocbpvcomp{(\pmpairWtoinZ {()} N)}
&= \bindXtoYinZ {\ret ()} z \pmpairWtoinZ z \cbvtocbpvcomp N\\
&= \pmpairWtoinZ {()} \cbvtocbpvcomp N\\
&= \cbvtocbpvcomp N
\end{align*}
\item $\pmpairWtoXYinZ {(V_1,V_2)} {x_1}{x_2} N \step N[V_1/x_1][V_2/x_2]$
\begin{align*}
\cbvtocbpvcomp{(\pmpairWtoXYinZ {(V_1,V_2)} {x_1}{x_2} N)}
&= \bindXtoYinZ {\cbvtocbpvcomp{(V_1,V_2)}} z \pmpairWtoXYinZ z {x_1}{x_2} \cbvtocbpvcomp N\\
&\equidyn \bindXtoYinZ {\ret{(\cbvtocbpvval {V_1}, \cbvtocbpvval {V_2})}} z \pmpairWtoXYinZ z {x_1}{x_2} \cbvtocbpvcomp N\\
&\equidyn \pmpairWtoXYinZ {(\cbvtocbpvval {V_1}, \cbvtocbpvval {V_2})} {x_1}{x_2} \cbvtocbpvcomp N\\
&\equidyn {\cbvtocbpvcomp N}[\cbvtocbpvval {V_1}/x_1][\cbvtocbpvval {V_2}/x_2]\\
&\equidyn \cbvtocbpvcomp {(N[V_1/x_1][V_2/x_2])}
\end{align*}
\item $\caseofXthenYelseZ {\inl V}{x_1. N_1}{x_2. N_2} \step N_1[V/x_1]$
\begin{align*}
\cbvtocbpvcomp{(\caseofXthenYelseZ {\inl V}{x_1. N_1}{x_2. N_2})}
&= \bindXtoYinZ {\cbvtocbpvcomp{({\inl V})}} z \caseofXthenYelseZ z {x_1. \cbvtocbpvcomp N_1}{x_2. \cbvtocbpvcomp N_2}\\
&\equidyn \bindXtoYinZ {\ret(\inl \cbvtocbpvval V)} z \caseofXthenYelseZ z {x_1. \cbvtocbpvcomp N_1}{x_2. \cbvtocbpvcomp N_2}\\
&\equidyn \caseofXthenYelseZ {\inl \cbvtocbpvval V} {x_1. \cbvtocbpvcomp N_1}{x_2. \cbvtocbpvcomp N_2}\\
&\equidyn {\cbvtocbpvcomp N_1}[\cbvtocbpvval V/x_1]\\
&\equidyn {\cbvtocbpvcomp {(N_1[V/x_1])}}
\end{align*}
\item $\caseofXthenYelseZ {\inr V}{x_1. N_1}{x_2. N_2} \step N_2[V/x_2]$
\end{itemize}
Next, we have the interesting cases, those specific to gradual type
casts/GTT.
......@@ -4353,24 +4401,85 @@ of the operational behavior of a standard Call-by-value cast calculus.
&\equidyn
\cbvtocbpvcomp{(\lambda y'. \obcast{A_2'}{A_2}(V\,(\obcast{A_1}{A_1'}y')))}
\end{align*}
\item $\obcast 1 1 () \step ()$
\begin{align*}
\cbvtocbpvcomp{(\obcast 1 1 ())}
&=
\dncast{\u F 1}{\u F \dyn}\defupcast{\u F 1}{\u F \dyn}[\ret ()]\\
&\equidyn \ret ()\\
&= \cbvtocbpvcomp{()}
\end{align*}
\item $\obcast{A_1' \times A_2'}{A_1 \times A_2}(V_1,V_2) \step (\obcast{A_1'}{A_1}V_1,\obcast{A_2'}{A_2}V_2)$
\begin{align*}
&\cbvtocbpvcomp{(\obcast{A_1' \times A_2'}{A_1 \times A_2}(V_1,V_2))}\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} \times \cbvtocbpvty{A_2'})}{\u F \dyn}\defupcast{\u F (\cbvtocbpvty{A_1} \times \cbvtocbpvty{A_2})}{\u F \dyn}\cbvtocbpvcomp{(V_1,V_2)}\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} \times \cbvtocbpvty{A_2'})}{\u F (\dyn\times\dyn)}\defupcast{\u F (\cbvtocbpvty{A_1} \times \cbvtocbpvty{A_2})}{\u F (\dyn \times \dyn)}\cbvtocbpvcomp{(V_1,V_2)}\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} \times \cbvtocbpvty{A_2'})}{\u F (\dyn\times\dyn)}\defupcast{\u F (\cbvtocbpvty{A_1} \times \cbvtocbpvty{A_2})}{\u F (\dyn\times\dyn)}\ret(\cbvtocbpvval{V_1},\cbvtocbpvval{V_2})\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} \times \cbvtocbpvty{A_2'})}{\u F (\dyn\times\dyn)}(\ret\upcast{(\cbvtocbpvty{A_1} \times \cbvtocbpvty{A_2})}{(\dyn\times\dyn)}(\cbvtocbpvval{V_1},\cbvtocbpvval{V_2}))\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} \times \cbvtocbpvty{A_2'})}{\u F (\dyn\times\dyn)}\\
&\qquad(\ret (\pmpairWtoXYinZ {(\cbvtocbpvval{V_1},\cbvtocbpvval{V_2})} {x_1}{x_2}(\upcast{\cbvtocbpvty{A_1}}\dyn x_1, \upcast{\cbvtocbpvty{A_2}}\dyn x_2)))\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} \times \cbvtocbpvty{A_2'})}{\u F (\dyn\times\dyn)}(\ret (\upcast{\cbvtocbpvty{A_1}}\dyn {\cbvtocbpvval{V_1}}, \upcast{\cbvtocbpvty{A_2}}\dyn x_2))\\
&\equidyn
\pmpairWtoXYinZ {(\upcast{\cbvtocbpvty{A_1}}\dyn {\cbvtocbpvval{V_1}}, \upcast{\cbvtocbpvty{A_2}}\dyn {\cbvtocbpvval{V_2}})} {y_1}{y_2}\\
&\qquad
\bindXtoYinZ {\dncast{\u F \cbvtocbpvty{A_1'}}{\u F \dyn}\ret y_1} {x_1'}\\
&\qquad
\bindXtoYinZ {\dncast{\u F \cbvtocbpvty{A_2'}}{\u F \dyn}\ret y_2} {x_2'}
\ret (x_1',x_2')\\
&\equidyn
\bindXtoYinZ {\dncast{\u F \cbvtocbpvty{A_1'}}{\u F \dyn}\ret \upcast{\cbvtocbpvty{A_1}}\dyn {\cbvtocbpvval{V_1}}} {x_1'}\\
&\qquad
\bindXtoYinZ {\dncast{\u F \cbvtocbpvty{A_2'}}{\u F \dyn}\ret \upcast{\cbvtocbpvty{A_2}}\dyn {\cbvtocbpvval{V_2}}} {x_2'}
\ret (x_1',x_2')\\
&\equidyn
\bindXtoYinZ {\dncast{\u F \cbvtocbpvty{A_1'}}{\u F \dyn}\defupcast{\cbvtocbpvty{A_1}}\dyn {\ret\cbvtocbpvval{V_1}}} {x_1'}\\
&\qquad
\bindXtoYinZ {\dncast{\u F \cbvtocbpvty{A_2'}}{\u F \dyn}\defupcast{\cbvtocbpvty{A_2}}\dyn {\ret\cbvtocbpvval{V_2}}} {x_2'}
\ret (x_1',x_2')\\
&\equidyn
\bindXtoYinZ {\dncast{\u F \cbvtocbpvty{A_1'}}{\u F \dyn}\defupcast{\cbvtocbpvty{A_1}}\dyn {\cbvtocbpvcomp{V_1}}} {x_1'}\\
&\qquad
\bindXtoYinZ {\dncast{\u F \cbvtocbpvty{A_2'}}{\u F \dyn}\defupcast{\cbvtocbpvty{A_2}}\dyn {\cbvtocbpvcomp{V_2}}} {x_2'}
\ret (x_1',x_2')\\
&\equidyn
\bindXtoYinZ {\cbvtocbpvcomp{\obcast{A_1'}{A_1}V_1}} {x_1'}
\bindXtoYinZ {\cbvtocbpvcomp{\obcast{A_2'}{A_2}V_2}} {x_2'}
\ret (x_1',x_2')\\
&= \cbvtocbpvcomp{({\obcast{A_1'}{A_1}V_1}, {\obcast{A_2'}{A_2}V_2})}
\end{align*}
\item $\obcast{A_1' + A_2'}{A_1 + A_2}{(\inl V)} \step \obcast{A_1'}{A_1}V$
\begin{align*}
&\cbvtocbpvcomp{(\obcast{A_1' + A_2'}{A_1 + A_2}(\inl V))}\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} + \cbvtocbpvty{A_2'})}{\u F \dyn}\defupcast{\u F (\cbvtocbpvty{A_1} + \cbvtocbpvty{A_2})}{\u F \dyn}\cbvtocbpvcomp{(\inl V)}\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} + \cbvtocbpvty{A_2'})}{\u F (\dyn+\dyn)}\defupcast{\u F (\cbvtocbpvty{A_1} + \cbvtocbpvty{A_2})}{\u F (\dyn + \dyn)}\cbvtocbpvcomp{(\inl V)}\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} + \cbvtocbpvty{A_2'})}{\u F (\dyn+\dyn)}\defupcast{\u F (\cbvtocbpvty{A_1} + \cbvtocbpvty{A_2})}{\u F (\dyn+\dyn)}\ret(\inl \cbvtocbpvval V)\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} + \cbvtocbpvty{A_2'})}{\u F (\dyn+\dyn)}\ret\upcast{(\cbvtocbpvty{A_1} + \cbvtocbpvty{A_2})}{(\dyn+\dyn)}(\inl \cbvtocbpvval V)\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} + \cbvtocbpvty{A_2'})}{\u F (\dyn+\dyn)}\ret(\caseofXthenYelseZ {\inl \cbvtocbpvval V} {x_1. \inl \upcast{A_1}\dyn x_1}{x_2. \inr \upcast{A_2}\dyn x_2})\\
&\equidyn
\dncast{\u F (\cbvtocbpvty{A_1'} + \cbvtocbpvty{A_2'})}{\u F (\dyn+\dyn)}\ret(\inl \upcast{A_1}\dyn \cbvtocbpvval V)\\
&\equidyn
\caseofXthenYelseZ {(\inl \upcast{A_1}\dyn \cbvtocbpvval V)}
{x_1. \dncast{\u F \cbvtocbpvty{A_1'}}{\u F \dyn}\ret x_1}
{x_2. \dncast{\u F \cbvtocbpvty{A_2'}}{\u F \dyn}\ret x_2}\\
&\equidyn
{\dncast{\u F \cbvtocbpvty{A_1'}}{\u F \dyn}\ret \upcast{A_1}\dyn \cbvtocbpvval V}\\
&\equidyn {\dncast{\u F \cbvtocbpvty{A_1'}}{\u F \dyn}\defupcast{\u F A_1}{\u F \dyn}\ret \cbvtocbpvval V}\\
&\equidyn {\dncast{\u F \cbvtocbpvty{A_1'}}{\u F \dyn}\defupcast{\u F A_1}{\u F \dyn}\cbvtocbpvcomp V}\\
&\equidyn \cbvtocbpvcomp{(\obcast{A_1'}{A_1}V)}
\end{align*}
\item $\obcast{A_1' + A_2'}{A_1 + A_2}{(\inr V)} \step \obcast{A_2'}{A_2}V$: similar to $\inl$ case.
\end{itemize}
\begin{mathpar}
\inferrule
{}
{S[\obcast 1 1 ()] \step S[()]}\and
\inferrule
{}
{S[\obcast{A_1' \times A_2'}{A_1 \times A_2}(V_1,V_2)] \step
S[(\obcast{A_1'}{A_1}V_1,\obcast{A_2'}{A_2}V_2)]}\and
\inferrule
{}
{S[\obcast{A_1' + A_2'}{A_1 + A_2}{(\inl V)}]\step
S[\obcast{A_1'}{A_1}V]}\and
\inferrule
{}
{S[\obcast{A_1' + A_2'}{A_1 + A_2}{(\inr V)}]\step
S[\obcast{A_2'}{A_2}V]}
\end{mathpar}
\end{proof}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment