Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
865d40b2
Commit
865d40b2
authored
6 years ago
by
Max New
Browse files
Options
Downloads
Patches
Plain Diff
cast decomposition lemma
parent
7768bdf2
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
paper/gtt.tex
+174
-84
174 additions, 84 deletions
paper/gtt.tex
with
174 additions
and
84 deletions
paper/gtt.tex
+
174
−
84
View file @
865d40b2
...
...
@@ -1848,25 +1848,29 @@ themselves.
\end{enumerate}
\end{lemma}
When combined with the logical relation interpretation of CBPV, this
is our graduality theorem.
\begin{theorem}
[Dynamism Preservation of Contract Translation (Graduality Part 1)]
Let
$
\rho
$
be a dynamic type interpretation. Then the following are true,
Our goal in the remainder of this section is to establish the
following ``axiomatic graduality'' theorem, which interprets a term
dynamism judgment of GTT as an ordering ``up to cast'' in CBPV. In the
next section, we provide an operational
\emph
{
model
}
of CBPV and thus
obtain by composition an operational gradulity theorem (the dynamic
gradual guarantee).
\begin{theorem}
[Axiomatic Graduality]
For any dynamic type interpretation, the following are true:
\begin{mathpar}
\inferrule
{
\Gamma
\ltdyn
\Gamma
'
\vdash
M
\ltdyn
M' :
\u
B
\ltdyn
\u
B'
}
{
\srho
{
\Gamma
}
\vdash
\srho
{
M
}
\ltdyn
\srho
{
\dncast
{
\u
B
}{
\u
B'
}}
[
\srho
{
M'[
\srho
{
\upcast
{
\Gamma
}{
\Gamma
'
}}
\Gamma
/
\Gamma
']
}
] :
\srho
{
\u
B
}}
\inferrule
{
\Gamma
\ltdyn
\Gamma
'
\vdash
V
\ltdyn
V' : A
\ltdyn
A'
}
{
\srho
{
\Gamma
}
\vdash
\srho
{
\upcast
{
A
}{
A'
}}
[
\srho
{
V
}
]
\ltdyn\srho
{
V'[
\srho
{
\upcast
{
\Gamma
}{
\Gamma
'
}}
\Gamma
/
\Gamma
']
}
:
\srho
{
A'
}}
{
\Phi
:
\Gamma
\ltdyn
\Gamma
'
\\
\Psi
:
\Delta
\ltdyn
\Delta
'
\\
\Phi
\pipe
\Psi
\vdash
M
\ltdyn
M' :
\u
B
\ltdyn
\u
B'
}
{
\sem\Gamma
\pipe
\sem
{
\Delta
'
}
\vdash
\sem
M[
\sem
{
\Psi
}
]
\ltdyn
\sdncast
{
\u
B
}{
\u
B'
}
[
\sem
{
M'
}
[
\sem
{
\Phi
}
]] :
\sem
{
\u
B
}}
\inferrule
{
\Gamma
\ltdyn
\Gamma
'
\pipe
\bullet
\ltdyn
\bullet
:
\u
B
\ltdyn
\u
B'
\vdash
S
\ltdyn
S' :
\u
C
\ltdyn
\u
C'
}
{
\srho
{
\Gamma
}
\pipe
\bullet
:
\srho
{
\u
B'
}
\vdash
\srho
{
S
}
[
\srho
{
\dncast
{
\u
B
}{
\u
B'
}}
]
\ltdyn
\srho
{
\dncast
{
\u
C
}{
\u
C'
}}
[
\srho
{
S'
}
[
\srho
{
\upcast
{
\Gamma
}{
\Gamma
'
}}
\Gamma
/
\Gamma
']] :
\srho
{
\u
C
}}
{
\Phi
:
\Gamma
\ltdyn
\Gamma
'
\\
\Phi
\vdash
V
\ltdyn
V' : A
\ltdyn
A'
}
{
\sem
{
\Gamma
}
\vdash
\supcast
{
A
}{
A'
}
[
\sem
{
V
}
]
\ltdyn\sem
{
V'
}
[
\sem\Phi
] :
\sem
{
A'
}}
\end{mathpar}
\end{theorem}
Quite frequently we need the following commuting conversions, which
are derivable from the
$
\eta
$
rules for positive connectives.
...
...
@@ -2403,17 +2407,32 @@ value and one when the continuation is a term.
TODO
\end{proof}
The following lemma is key to proving many ``axioms'' are valid in
GTT, since an identity cast is inserted in translation. Also it is key
to proving that GTT is a conservative extension of CBPV.
\begin{lemma}
[Identity Expansion]
For any
$
A
$
and
$
\u
B
$
,
\begin{mathpar}
x:A
\vdash
\sem
{
\upcast
{
A
}{
A
}}
\equidyn
x : A
\\
\bullet
:
\u
B
\vdash
\sem
{
\dncast
{
\u
B
}{
\u
B
}}
\equidyn
\bullet
:
\u
B
\end{mathpar}
\end{lemma}
\begin{proof}
TODO: induction on everything
\end{proof}
The following lemma is key to proving the coherence lemma.
%
A similar lemma says that the projection downcasts determine the
embeddings but I don't see anywhere where we need that.
\begin{lemma}
[Value Embedding determines Projection]
\begin{lemma}
[Value Embedding determines Projection, Computation Projection determines Embedding]
For any value
$
x : A
\vdash
V
_
e : A'
$
and stacks
$
\bullet
:
\u
F A'
\vdash
S
_
1
:
\u
F A
$
and
$
\bullet
:
\u
F A'
\vdash
S
_
2
:
\u
F A
$
, if
$
(
V
_
e, S
_
1
)
$
and
$
(
V
_
e, S
_
2
)
$
are both value ep pairs, then
\[
S
_
1
\equidyn
S
_
2
\]
\end{lemma}
Similarly for any values
$
x : U
\u
B
\vdash
V
_
1
: U
\u
B'
$
and
$
x :
U
\u
B
\vdash
V
_
2
: U
\u
B'
$
and stack
$
\bullet
:
\u
B'
\vdash
S
_
p :
\u
B
$
, if
$
(
V
_
1
, S
_
p
)
$
and
$
(
V
_
2
, S
_
p
)
$
are both computation ep pairs then
\[
V
_
1
\equidyn
V
_
2
\]
\end{lemma}
\begin{proof}
By symmetry it is sufficient to show
$
S
_
1
\ltdyn
S
_
2
$
.
...
...
@@ -2428,22 +2447,18 @@ embeddings but I don't see anywhere where we need that.
{
\bindXtoYinZ
{
S
_
1
}
x
\ret
x
\ltdyn
\bindXtoYinZ
\bullet
x S
_
2[
\ret
x]
}}
{
\bullet
:
\u
F A'
\vdash
S
_
1
\ltdyn
S
_
2 :
\u
F A
}
\end{mathpar}
\end{proof}
The following lemma is key to proving many ``axioms'' are valid in
GTT, since an identity cast is inserted in translation. Also it is key
to proving that GTT is a conservative extension of CBPV.
\begin{lemma}
[Identity Expansion]
For any
$
A
$
and
$
\u
B
$
,
similarly to show
$
V
_
1
\ltdyn
V
_
2
$
:
\begin{mathpar}
x:A
\vdash
\sem
{
\upcast
{
A
}{
A
}}
\equidyn
x : A
\\
\bullet
:
\u
B
\vdash
\sem
{
\dncast
{
\u
B
}{
\u
B
}}
\equidyn
\bullet
:
\u
B
\inferrule
%
{
\inferrule
{
\inferrule
{
x : U
\u
B
\vdash
\thunk\force
V
_
2
\ltdyn
\thunk
\force
V
_
2 : U
\u
B'
}
{
x : U
\u
B
\vdash
\thunk
\force
x
\ltdyn
\thunk
S
_
p[
\force
V
_
2]
}}
{
x : U
\u
B
\vdash
\thunk\force
V
_
1
\ltdyn
\thunk
\force
V
_
2 : U
\u
B'
}}
{
x : U
\u
B
\vdash
V
_
1
\ltdyn
V
_
2 : U
\u
B'
}
\end{mathpar}
\end{lemma}
\begin{proof}
TODO: induction on everything
\end{proof}
\begin{lemma}
[Cast Decomposition]
For any dynamic type interpretation
$
\rho
$
,
\begin{mathpar}
...
...
@@ -2462,75 +2477,150 @@ to proving that GTT is a conservative extension of CBPV.
\begin{enumerate}
\item
$
A
\ltdyn
A'
\ltdyn
A''
$
\begin{enumerate}
\item
If
$
A
=
\dynv
$
, then
$
A'
=
A''
=
\dynv
$
TODO
\item
If
$
A
\neq
\dynv
$
and
$
A'
=
\dynv
$
, then
$
A''
=
\dynv
$
: TODO
\item
If
$
A, A'
\neq
\dynv
$
and
$
A''
=
\dynv
$
: TODO
\item
If
$
A,A',A''
\neq
\dynv
$
, then they all have the same
\item
If
$
A
=
0
$
, we need to show
$
x :
0
\vdash
\supcast
{
0
}{
A''
}
[
x
]
\equidyn
\supcast
{
A'
}{
A''
}
[
\supcast
{
0
}{
A'
}
[
x
]]
: A''
$
which follows by
$
0
\eta
$
.
\item
If
$
A
=
\dynv
$
, then
$
A'
=
A''
=
\dynv
$
, and both casts are
the identity.
\item
If
$
A
\not\in
\{\dynv
,
0
\}
$
and
$
A'
=
\dynv
$
, then
$
A''
=
\dynv
$
and
$
\supcast
{
\dynv
}{
\dynv
}
[
\supcast
{
A
}{
\dynv
}
]
=
\supcast
{
A
}{
\dynv
}$
by definition.
\item
If
$
A, A'
\not\in
\{\dynv
,
0
\}
$
and
$
A''
=
\dynv
$
, then
$
\floor
A
=
\floor
{
A'
}$
, which we call
$
G
$
and
\[
\supcast
{
A
}{
\dynv
}
=
\supcast
{
G
}{
\dynv
}
[
\supcast
{
A
}{
G
}
]
\]
and
\[
\supcast
{
A'
}{
\dynv
}
[
\supcast
{
A
}{
A'
}
]
=
\supcast
{
G
}{
\dynv
}
[
\supcast
{
A'
}{
G
}
[
\supcast
{
A
}{
A'
}
]]
\]
so this reduces to the case for
$
A
\ltdyn
A'
\ltdyn
G
$
, below.
\item
If
$
A,A',A''
\not\in
\{\dynv
,
0
\}
$
, then they all have the same
top-level constructor:
\begin{enumerate}
\item
$
0
$
: TODO
\item
$
+
$
: TODO
\item
$
1
$
: TODO
\item
$
\times
$
: TODO
\item
$
U
\u
B
\ltdyn
U
\u
B'
\ltdyn
U
\u
B''
$
. TODO, but here's
the argument: by IH we know the downcasts compose. But
projections determine embeddings and ep pairs compose, so the
upcasts compose. Beautiful!
\item
$
+
$
: We need to show for
$
A
_
1
\ltdyn
A
_
1
'
\ltdyn
A
_
1
''
$
and
$
A
_
2
\ltdyn
A
_
2
'
\ltdyn
A
_
2
''
$
:
\[
x :
\sem
{
A
_
1
}
+
\sem
{
A
_
2
}
\vdash
\supcast
{
A
_
1
'
+
A
_
2
'
}{
A
_
1
''
+
A
_
2
''
}
[
\supcast
{
A
_
1
+
A
_
2
}{
A
_
1
'
+
A
_
2
'
}
[
x
]]
\equidyn
\supcast
{
A
_
1
+
A
_
2
}{
A
_
1
''
+
A
_
2
''
}
[
x
]
:
\sem
{
A
_
1
''
}
+
\sem
{
A
_
2
''
}
.
\]
We proceed as follows:
\begin{align*}
&
\supcast
{
A
_
1'+A
_
2'
}{
A
_
1''+A
_
2''
}
[
\supcast
{
A
_
1+A
_
2
}{
A
_
1'+A
_
2'
}
[x]]
\\
&
\equidyn
\caseofX
{
x
}
\tag
{$
+
\eta
$}
\\
&
\qquad\thenY
{
x
_
1.
\supcast
{
A
_
1'+A
_
2'
}{
A
_
1''+A
_
2''
}
[
\supcast
{
A
_
1+A
_
2
}{
A
_
1'+A
_
2'
}
[
\inl
x
_
1]]
}
\\
&
\qquad\elseZ
{
x
_
2.
\supcast
{
A
_
1'+A
_
2'
}{
A
_
1''+A
_
2''
}
[
\supcast
{
A
_
1+A
_
2
}{
A
_
1'+A
_
2'
}
[
\inr
x
_
2]]
}
\\
&
\equidyn
\caseofX
{
x
}
\tag
{
cast reduction
}
\\
&
\qquad\thenY
{
x
_
1.
\supcast
{
A
_
1'+A
_
2'
}{
A
_
1''+A
_
2''
}
[
\inl\supcast
{
A
_
1
}{
A
_
1'
}
[x
_
1]]
}
\\
&
\qquad\elseZ
{
x
_
2.
\supcast
{
A
_
1'+A
_
2'
}{
A
_
1''+A
_
2''
}
[
\inr\supcast
{
A
_
2
}{
A
_
2'
}
[x
_
2]]
}
\\
&
\equidyn
\caseofX
{
x
}
\tag
{
cast reduction
}
\\
&
\qquad\thenY
{
x
_
1.
\inl\supcast
{
A
_
1'
}{
A
_
1''
}
[
\supcast
{
A
_
1
}{
A
_
1'
}
[x
_
1]]
}
\\
&
\qquad\elseZ
{
x
_
2.
\inr\supcast
{
A
_
2'
}{
A
_
2''
}
[
\supcast
{
A
_
2
}{
A
_
2'
}
[x
_
2]]
}
\\
&
\equidyn
\caseofX
{
x
}
\tag
{
IH
}
\\
&
\qquad\thenY
{
x
_
1.
\inl\supcast
{
A
_
1
}{
A
_
1''
}
[x
_
1]
}
\\
&
\qquad\elseZ
{
x
_
2.
\inr\supcast
{
A
_
2
}{
A
_
2''
}
[x
_
2]
}
\\
&
=
\supcast
{
A
_
1+A
_
2
}{
A
_
1''+A
_
2''
}
[x]
\tag
{
definition
}
\end{align*}
\item
$
1
$
: By definition both sides are the identity.
\item
$
\times
$
: We need to show for
$
A
_
1
\ltdyn
A
_
1
'
\ltdyn
A
_
1
''
$
and
$
A
_
2
\ltdyn
A
_
2
'
\ltdyn
A
_
2
''
$
:
\[
x :
\sem
{
A
_
1
}
\times
\sem
{
A
_
2
}
\vdash
\supcast
{
A
_
1
'
\times
A
_
2
'
}{
A
_
1
''
\times
A
_
2
''
}
[
\supcast
{
A
_
1
\times
A
_
2
}{
A
_
1
'
\times
A
_
2
'
}
[
x
]]
\equidyn
\supcast
{
A
_
1
\times
A
_
2
}{
A
_
1
''
\times
A
_
2
''
}
[
x
]
:
\sem
{
A
_
1
''
}
\times
\sem
{
A
_
2
''
}
.
\]
We proceed as follows:
\begin{align*}
&
\supcast
{
A
_
1'
\times
A
_
2'
}{
A
_
1''
\times
A
_
2''
}
[
\supcast
{
A
_
1
\times
A
_
2
}{
A
_
1'
\times
A
_
2'
}
[x]]
\\
&
\equidyn\pmpairWtoXYinZ
x y z
\supcast
{
A
_
1'
\times
A
_
2'
}{
A
_
1''
\times
A
_
2''
}
[
\supcast
{
A
_
1
\times
A
_
2
}{
A
_
1'
\times
A
_
2'
}
[(y,z)]]
\tag
{$
\times\eta
$}
\\
&
\equidyn\pmpairWtoXYinZ
x y z
\supcast
{
A
_
1'
\times
A
_
2'
}{
A
_
1''
\times
A
_
2''
}
[(
\supcast
{
A
_
1
}{
A
_
1'
}
[y],
\supcast
{
A
_
2
}{
A
_
2'
}
[z])]
\tag
{
cast reduction
}
\\
&
\equidyn\pmpairWtoXYinZ
x y z (
\supcast
{
A
_
1'
}{
A
_
1''
}
[
\supcast
{
A
_
1
}{
A
_
1'
}
[y]],
\supcast
{
A
_
2'
}{
A
_
2''
}
[
\supcast
{
A
_
2
}{
A
_
2'
}
[z]])
\tag
{
cast reduction
}
\\
&
\equidyn\pmpairWtoXYinZ
x y z (
\supcast
{
A
_
1
}{
A
_
1''
}
[y],
\supcast
{
A
_
2
}{
A
_
2''
}
[z])
\tag
{
IH
}
\\
&
=
\supcast
{
A
_
1
\times
A
_
2
}{
A
_
1''
\times
A
_
2''
}
[x]
\tag
{
definition
}
\end{align*}
\item
$
U
\u
B
\ltdyn
U
\u
B'
\ltdyn
U
\u
B''
$
.
We need to show
\[
x : U
\u
B
\vdash
\supcast
{
U
\u
B'
}{
U
\u
B''
}
[
\supcast
{
U
\u
B
}{
U
\u
B'
}
[
x
]]
\equidyn
\supcast
{
U
\u
B
}{
U
\u
B''
}
[
x
]
: U
\u
B''
\]
By composition of ep pairs, we know
$
(
x.
\supcast
{
U
\u
B'
}{
U
\u
B''
}
[
\supcast
{
U
\u
B
}{
U
\u
B'
}
[
x
]]
,
\sdncast
{
\u
B
}{
\u
B'
}
[
\sdncast
{
\u
B'
}{
\u
B''
}
])
$
is a computation ep pair.
Furthermore, by inductive hypothesis, we know
\[
\sdncast
{
\u
B
}{
\u
B'
}
[
\sdncast
{
\u
B'
}{
\u
B''
}
]
\equidyn
\sdncast
{
\u
B
}{
\u
B''
}\]
so then both sides form ep pairs paired with
$
\sdncast
{
\u
B
}{
\u
B''
}$
, so it follows because computation projections
determine embeddings (TODO ref).
\end{enumerate}
\end{enumerate}
\item
$
\u
B
\ltdyn
\u
B'
\ltdyn
\u
B''
$
\begin{enumerate}
\item
If
$
\u
B
=
\dync
$
, then
$
\u
B'
=
\u
B''
=
\dync
$
TODO
\item
If
$
\u
B
\neq
\dync
$
, and
$
\u
B'
=
\dync
$
, then
$
\u
B''
=
\dync
$
TODO
\item
If
$
\u
B,
\u
B'
\neq
\dync
$
, and
$
\u
B''
=
\dync
$
TODO
\item
If
$
\u
B,
\u
B',
\u
B''
\neq
\dync
$
, then they all have the
\item
If
$
\u
B
=
\top
$
, then the result is immediate by
$
\eta\top
$
.
\item
If
$
\u
B
=
\dync
$
, then
$
\u
B'
=
\u
B''
=
\dync
$
then both
sides are just
$
\bullet
$
.
\item
If
$
\u
B
\not\in
\{\dync
,
\top\}
$
, and
$
\u
B'
=
\dync
$
, then
$
\u
B''
=
\dync
$
\[
\sdncast
{
\u
B
}{
\dync
}
[
\sdncast
{
\dync
}{
\dync
}
]
=
\sdncast
{
\u
B
}{
\dync
}
\]
\item
If
$
\u
B,
\u
B'
\not\in
\{\dync
,
\top\}
$
, and
$
\u
B''
=
\dync
$
, and
$
\floor
{
\u
B
}
=
\floor
{
\u
B'
}$
, which we
call
$
\u
G
$
. Then we need to show
\[
\sdncast
{
\u
B
}{
\u
B'
}
[
\sdncast
{
\u
B'
}{
\u
G
}
[
\sdncast
{
\u
G
}{
\dync
}
]]
\equidyn
\sdncast
{
\u
B
}{
\u
G
}
[
\sdncast
{
\u
G
}
[
\dync
]]
\]
so the result follows from the case
$
\u
B
\ltdyn
\u
B'
\ltdyn
\u
G
$
, which is handled below.
\item
If
$
\u
B,
\u
B',
\u
B''
\not\in
\{\dync
,
\top\}
$
, then they all have the
same top-level constructor:
\begin{enumerate}
\item
$
\top
$
\item
$
\with
$
\item
$
\to
$
\item
$
\u
F A
\ltdyn
\u
F A'
\ltdyn
\u
F A''
$
: TODO, but same
argument as the
$
UUU
$
case
\item
$
\with
$
We are given
$
\u
B
_
1
\ltdyn
\u
B
_
1
'
\ltdyn
\u
B
_
1
''
$
and
$
\u
B
_
2
\ltdyn
\u
B
_
2
'
\ltdyn
\u
B
_
2
''
$
and we need to show
\[
\bullet
:
\u
B
_
1
''
\with
\u
B
_
2
''
\vdash
\sdncast
{
\u
B
_
1
\with
\u
B
_
2
}{
\u
B
_
1
'
\with
\u
B
_
2
'
}
[
\sdncast
{
\u
B
_
1
'
\with
\u
B
_
2
'
}{
\u
B
_
1
''
\with
\u
B
_
2
''
}
]
:
\u
B
_
1
\with
\u
B
_
2
\]
We proceed as follows:
\begin{align*}
&
\sdncast
{
\u
B
_
1
\with
\u
B
_
2
}{
\u
B
_
1'
\with
\u
B
_
2'
}
[
\sdncast
{
\u
B
_
1'
\with
\u
B
_
2'
}{
\u
B
_
1''
\with
\u
B
_
2''
}
]
\\
&
\equidyn\pairone
{
\pi\sdncast
{
\u
B
_
1
\with
\u
B
_
2
}{
\u
B
_
1'
\with
\u
B
_
2'
}
[
\sdncast
{
\u
B
_
1'
\with
\u
B
_
2'
}{
\u
B
_
1''
\with
\u
B
_
2''
}
]
}
\tag
{$
\with\eta
$}
\\
&
\quad\pairtwo
{
\pi
'
\sdncast
{
\u
B
_
1
\with
\u
B
_
2
}{
\u
B
_
1'
\with
\u
B
_
2'
}
[
\sdncast
{
\u
B
_
1'
\with
\u
B
_
2'
}{
\u
B
_
1''
\with
\u
B
_
2''
}
]
}
\\
&
\equidyn\pairone
{
\sdncast
{
\u
B
_
1
}{
\u
B
_
1'
}
[
\pi\sdncast
{
\u
B
_
1'
\with
\u
B
_
2'
}{
\u
B
_
1''
\with
\u
B
_
2''
}
]
}
\tag
{
cast reduction
}
\\
&
\quad\pairtwo
{
\sdncast
{
\u
B
_
2
}{
\u
B
_
2'
}
[
\pi
'
\sdncast
{
\u
B
_
1'
\with
\u
B
_
2'
}{
\u
B
_
1''
\with
\u
B
_
2''
}
]
}
\\
&
\equidyn\pairone
{
\sdncast
{
\u
B
_
1
}{
\u
B
_
1'
}
[
\sdncast
{
\u
B
_
1'
}{
\u
B
_
1''
}
[
\pi\bullet
]]
}
\tag
{
cast reduction
}
\\
&
\quad\pairtwo
{
\sdncast
{
\u
B
_
2
}{
\u
B
_
2'
}
\sdncast
{
\u
B
_
2'
}{
\u
B
_
2''
}
[
\pi
'
\bullet
]
}
\\
&
\equidyn\pair
{
\sdncast
{
\u
B
_
1
}{
\u
B
_
1''
}
[
\pi\bullet
]
}{
\sdncast
{
\u
B
_
2
}{
\u
B
_
2''
}
[
\pi
'
\bullet
]
}
\tag
{
IH
}
\\
&
=
\sdncast
{
\u
B
_
1
\with
\u
B
_
2
}{
\u
B
_
1''
\with
\u
B
_
2''
}
\tag
{
definition
}
\end{align*}
\item
$
\to
$
, assume we are given
$
A
\ltdyn
A'
\ltdyn
A''
$
and
$
\u
B
\ltdyn
\u
B'
\ltdyn
\u
B''
$
, then we proceed:
\begin{align*}
&
\sdncast
{
A
\to
\u
B
}{
A'
\to
\u
B'
}
[
\sdncast
{
A'
\to
\u
B'
}{
A''
\to
\u
B''
}
]
\\
&
\equidyn
\lambda
x:A. (
\sdncast
{
A
\to
\u
B
}{
A'
\to
\u
B'
}
[
\sdncast
{
A'
\to
\u
B'
}{
A''
\to
\u
B''
}
][
\bullet
])
\,
x
\tag
{$
\to\eta
$}
\\
&
\equidyn
\lambda
x:A.
\sdncast
{
\u
B
}{
\u
B'
}
[(
\sdncast
{
A'
\to
\u
B'
}{
A''
\to
\u
B''
}
[
\bullet
])
\,
\supcast
{
A
}{
A'
}
[x]]
\tag
{
cast reduction
}
\\
&
\equidyn
\lambda
x:A.
\sdncast
{
\u
B
}{
\u
B'
}
[
\sdncast
{
\u
B'
}{
\u
B''
}
[
\bullet\,
\supcast
{
A'
}{
A''
}
[
\supcast
{
A
}{
A'
}
[x]]]]
\tag
{
cast reduction
}
\\
&
\equidyn
\lambda
x:A.
\sdncast
{
\u
B
}{
\u
B''
}
[
\bullet\,\supcast
{
A
}{
A''
}
[x]]
\\
&
=
\sdncast
{
A
\to
\u
B
}{
A
\to
\u
B''
}
[
\bullet
]
\tag
{
definition
}
\end{align*}
\item
$
\u
F A
\ltdyn
\u
F A'
\ltdyn
\u
F A''
$
. First, by
composition of ep pairs, we know
\[
(
x.
\supcast
{
A'
}{
A''
}
[
\supcast
{
A
}{
A'
}
[
x
]]
,
\sdncast
{
\u
F
A
}{
\u
F A'
}
)[
\sdncast
{
\u
F A'
}{
\u
F A''
}
]
\]
form a value ep pair.
Furthermore, by inductive hypothesis, we know
\[
x : A
\vdash
\supcast
{
A'
}{
A''
}
[
\supcast
{
A
}{
A'
}
[
x
]]
\equidyn
\supcast
{
A
}{
A''
}
[
x
]
\]
so the two sides of our equation are both projections with the
same value embedding, so the equation follows from uniqueness
of projections from value embeddings.
\end{enumerate}
\end{enumerate}
\end{enumerate}
\end{proof}
\begin{lemma}
[Cast Compatibility Lemmas]
The following rules are valid
\begin{enumerate}
\item
Value Type Rules
\begin{enumerate}
\item
$
\inferrule
{
\Gamma
\vdash
M
\ltdyn
\sdn
{
\u
B
}{
\u
B'
}
[
M'
]
:
\srho
{
\u
B
}}{
\Gamma
\vdash
\sup
{
U
\u
B
}{
U
\u
B'
}
\thunk
M
\ltdyn
\thunk
M' : U
\srho
{
\u
B'
}}$
By Galois lemma (TODO)
\item
$
\inferrule
{
\Gamma
\vdash
\sup
{
U
\u
B
}{
U
\u
B'
}
V
\ltdyn
V' :
\srho
{
U
\u
B'
}}
{
\Gamma
\vdash
\force
V
\ltdyn
\sdn
{
U
\u
B
}{
U
\u
B'
}
\force
V'
}
:
\srho
{
U
\u
B
}$
by Galois lemma (TODO)
\end{enumerate}
\item
Computation Type rules
\begin{enumerate}
\item
$
\inferrule
{
\Gamma
, x:
\srho
{
A
}
\vdash
N
\ltdyn
N'
[
\sup
{
A
}{
A'
}
[
x
]/
x'
]
:
\u
B
}
{
\Gamma
\vdash
\bindXtoYinZ
{
\sdn
{
\u
F A
}{
\u
F A'
}
\bullet
}
x N
\ltdyn
\bindXtoYinZ
\bullet
{
x'
}
N'
}
:
\u
B'
$
By Galois lemma (TODO):
\begin{align*}
\bindXtoYinZ
{
\sdn
{
\u
F A
}{
\u
F A'
}
\bullet
}
x N
&
\ltdyn\bindXtoYinZ
{
\sdn
{
\u
F A
}{
\u
F A'
}
\bullet
}
x N'[
\sup
{
A
}{
A'
}
[x]/x']
\\
&
\ltdyn
\bindXtoYinZ
\bullet
{
x'
}
N'
\end{align*}
\item
$
\inferrule
{
\Gamma
\vdash
\sup
{
A
}{
A'
}
V
\ltdyn
V' : A'
}{
\Gamma
\vdash
\ret
V
\ltdyn
\sdn
{
\u
F A
}{
\u
F A'
}
\ret
V'
}$
Direct by Galois lemma (TODO)
\end{enumerate}
\end{enumerate}
\end{lemma}
\begin{lemma}
[Graduality Substitution Principles]
TODO: substituting value in a value, term or stack, substituting a
term in a stack (use substitution for the target, decomposition)
\end{lemma}
\begin{theorem}
[Axiomatic Graduality]
Let
$
\rho
$
be a
dynamic type interpretation
. Then
the following are true
,
For any
dynamic type interpretation
,
the following are true
:
\begin{mathpar}
\inferrule
{
\Phi
:
\Gamma
\ltdyn
\Gamma
'
\\
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment