Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
7f3a036c
Commit
7f3a036c
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Weak bisimilarity relation on Lift X
parent
2659fb3c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Semantics/WeakBisimilarity.agda
+244
-0
244 additions, 0 deletions
...lizations/guarded-cubical/Semantics/WeakBisimilarity.agda
with
244 additions
and
0 deletions
formalizations/guarded-cubical/Semantics/WeakBisimilarity.agda
0 → 100644
+
244
−
0
View file @
7f3a036c
{-# OPTIONS --rewriting --guarded #-}
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
open import Common.Later
module Semantics.WeakBisimilarity (k : Clock) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.Data.Nat hiding (_^_)
open import Cubical.Data.Sum
open import Cubical.Data.Empty as ⊥
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Poset
open import Cubical.HITs.PropositionalTruncation renaming (elim to PTelim)
open import Common.Common
open import Semantics.Lift k
private
variable
ℓ ℓ' ℓR : Level
▹_ : Type ℓ → Type ℓ
▹_ A = ▹_,_ k A
open BinaryRelation
-- Weak bisimilarity on Lift X, parameterized by a relation on X.
--
-- If this relation is instantiated with a PER on X, then the
-- properties below can be used to show that the resulting relation
-- on Lift X is also a PER.
module Bisim (X : Type ℓ) (R : X -> X -> Type ℓR) where
-- We use the propositional truncation in the case where the LHS is η
-- and RHS is θ or vice versa, so that the relation will be prop-valued
-- whenever R is.
module Inductive (rec : ▹ (L X -> L X -> Type (ℓ-max ℓ ℓR))) where
_≈'_ : L X -> L X -> Type (ℓ-max ℓ ℓR)
η x ≈' η y = Lift {i = ℓR} {j = ℓ} (R x y)
η x ≈' θ ly~ = ∥ Σ[ n ∈ ℕ ] Σ[ y ∈ X ] (θ ly~ ≡ (δL ^ n) (η y)) × R x y ∥₁
θ lx~ ≈' η y = ∥ Σ[ n ∈ ℕ ] Σ[ x ∈ X ] (θ lx~ ≡ (δL ^ n) (η x)) × R x y ∥₁
θ lx~ ≈' θ ly~ = ▸ (λ t -> rec t (lx~ t) (ly~ t))
_≈_ : L X -> L X -> Type (ℓ-max ℓ ℓR)
_≈_ = fix _≈'_
where open Inductive
unfold-≈ : _≈_ ≡ Inductive._≈'_ (next _≈_)
unfold-≈ = fix-eq Inductive._≈'_
open Inductive (next _≈_)
≈'→≈ : (l l' : L X) -> l ≈' l' -> l ≈ l'
≈'→≈ l l' l≈'l' = transport (sym (λ i -> unfold-≈ i l l')) l≈'l'
≈→≈' : (l l' : L X) -> l ≈ l' -> l ≈' l'
≈→≈' l l' l≈l' = transport (λ i -> unfold-≈ i l l') l≈l'
-- Properties:
-- ≈ is a congruence with respect to θ
-- ≈ is closed under δ on both sides
-- R is not transitive (follows from the previous two, plus a
-- general result on relations defined on Lift X)
-- If R is prop-valued, so is ≈
-- If R is reflexive, so is ≈
-- If R is symmetric, so is ≈
θ-cong : {lx ly : ▹ (L X)} -> ▸ (λ t → (lx t) ≈ (ly t)) -> (θ lx) ≈ (θ ly)
θ-cong {lx~} {ly~} H-later = ≈'→≈ (θ lx~) (θ ly~) H-later
module PropValued (isPropValuedR : isPropValued R) where
lem : ∀ n m (x y : X) -> (δL ^ n) (η x) ≡ (δL ^ m) (η y) -> (n ≡ m) × (x ≡ y)
lem zero zero x y H = refl , inj-η x y H
lem zero (suc m) x y H = ⊥.rec (Lη≠Lθ H)
lem (suc n) zero x y H = ⊥.rec (Lη≠Lθ (sym H))
lem (suc n) (suc m) x y H = {!!} -- *not provable!!*
-- let IH = lem n m x y {!!} in {!!}
prop-≈'→prop-≈ : BinaryRelation.isPropValued _≈'_ -> BinaryRelation.isPropValued _≈_
prop-≈'→prop-≈ = transport (λ i -> BinaryRelation.isPropValued (sym unfold-≈ i))
prop' : ▹ (BinaryRelation.isPropValued _≈'_) -> BinaryRelation.isPropValued _≈'_
prop' IH (η a) (η b) p q =
let x = (isPropValuedR a b (lower p) (lower q)) in isoInvInjective LiftIso p q x
prop' IH (η a) (θ lb~) p q = isPropPropTrunc p q --ΣPathP ({!snd q .snd .fst!} , {!!})
prop' IH (θ la~) (η b) p q = isPropPropTrunc p q
prop' IH (θ la~) (θ lb~) p q =
λ i t → prop-≈'→prop-≈ (IH t) (la~ t) (lb~ t) (p t) (q t) i
prop : BinaryRelation.isPropValued _≈_
prop = prop-≈'→prop-≈ (fix prop')
module Reflexive (isReflR : isRefl R) where
≈'-refl : ▹ (isRefl _≈'_) -> isRefl _≈'_
≈'-refl _ (η x) = lift (isReflR x)
≈'-refl IH (θ lx~) = λ t → ≈'→≈ _ _ (IH t (lx~ t))
≈-refl : isRefl _≈_
≈-refl lx = ≈'→≈ _ _ (fix ≈'-refl lx)
x≈'δx : ▹ ((lx : L X) -> lx ≈' (δL lx)) ->
(lx : L X) -> lx ≈' (δL lx)
x≈'δx _ (η x) = ∣ 1 , x , refl , isReflR x ∣₁
x≈'δx IH (θ lx~) =
λ t → ≈'→≈ (lx~ t) (θ lx~)
(transport (λ i → (lx~ t) ≈' θ (next-Mt≡M lx~ t i)) (IH t (lx~ t)))
x≈δx : (lx : L X) -> lx ≈ (δL lx)
x≈δx lx = ≈'→≈ lx (δL lx) (fix x≈'δx lx)
module Symmetric (isSymR : isSym R) where
symmetric' :
▹ ((lx ly : L X) -> lx ≈' ly -> ly ≈' lx) ->
(lx ly : L X) -> lx ≈' ly -> ly ≈' lx
symmetric' _ (η x) (η y) xRy = lift (isSymR x y (lower xRy)) -- symmetry of the underlying relation
symmetric' IH (θ lx~) (θ ly~) lx≈'ly =
λ t → ≈'→≈ _ _ (IH t (lx~ t) (ly~ t) (≈→≈' _ _ (lx≈'ly t)))
symmetric' _ (θ lx~) (η y) H =
PTelim (λ _ -> isPropPropTrunc)
(λ {(n , x , eq , xRy) -> ∣ n , x , eq , isSymR x y xRy ∣₁})
H
symmetric' _ (η x) (θ ly~) H =
PTelim (λ _ -> isPropPropTrunc)
(λ {(n , y , eq , xRy) -> ∣ n , y , eq , isSymR x y xRy ∣₁})
H
symmetric : (lx ly : L X ) -> lx ≈ ly -> ly ≈ lx
symmetric lx ly lx≈ly =
≈'→≈ _ _ (fix symmetric' lx ly (≈→≈' _ _ lx≈ly))
-- A version of weak bisimilarity on Lift X that seems to *not* be
-- propositional. The issue is that in the two cases involving Σ, we cannot
-- prove that the natural number n and the value of type X are unique.
-- To do so seems to require that the function δL is injective,
-- but since δL = θ ∘ next, and next is not injective, then δL is not injective.
module NonPropBisim (X : Type ℓ) (R : X -> X -> Type ℓR) where
module Inductive (rec : ▹ (L X -> L X -> Type (ℓ-max ℓ ℓR))) where
_≈'_ : L X -> L X -> Type (ℓ-max ℓ ℓR)
η x ≈' η y = Lift {i = ℓR} {j = ℓ} (R x y)
η x ≈' θ ly~ = Σ[ n ∈ ℕ ] Σ[ y ∈ X ] (θ ly~ ≡ (δL ^ n) (η y)) × R x y
θ lx~ ≈' η y = Σ[ n ∈ ℕ ] Σ[ x ∈ X ] (θ lx~ ≡ (δL ^ n) (η x)) × R x y
θ lx~ ≈' θ ly~ = ▸ (λ t -> rec t (lx~ t) (ly~ t))
_≈_ : L X -> L X -> Type (ℓ-max ℓ ℓR)
_≈_ = fix _≈'_
where open Inductive
unfold-≈ : _≈_ ≡ Inductive._≈'_ (next _≈_)
unfold-≈ = fix-eq Inductive._≈'_
{-
module BisimSum (X : Type ℓ) (R : X -> X -> Type ℓR) where
-- Weak bisimilarity as a sum type
-- We could merge the middle two conditions, but we choose to keep them separate here.
module Inductive (rec : ▹ (L X -> L X -> Type (ℓ-max ℓ ℓR))) where
_≈'_ : L X -> L X -> Type (ℓ-max ℓ ℓR)
l ≈' l' = (Σ[ x ∈ X ] Σ[ y ∈ X ] (l ≡ η x) × (l' ≡ η y) × R x y) ⊎
((Σ[ x ∈ X ] Σ[ y ∈ X ] Σ[ n ∈ ℕ ] (l ≡ η x) × (l' ≡ (δL ^ n) (η y)) × R x y) ⊎
((Σ[ x ∈ X ] Σ[ y ∈ X ] Σ[ n ∈ ℕ ] (l ≡ (δL ^ n) (η x)) × (l' ≡ η y) × R x y) ⊎
(Σ[ lx~ ∈ ▹ (L X) ] Σ[ ly~ ∈ ▹ (L X) ] (l ≡ θ lx~) × (l' ≡ θ ly~) × (▸ (λ t -> rec t (lx~ t) (ly~ t))))))
_≈_ : L X → L X → Type (ℓ-max ℓ ℓR)
_≈_ = fix Inductive._≈'_
unfold-≈ : _≈_ ≡ Inductive._≈'_ (next _≈_)
unfold-≈ = fix-eq Inductive._≈'_
open Inductive (next _≈_)
≈'→≈ : (l l' : L X) -> l ≈' l' -> l ≈ l'
≈'→≈ l l' l≈'l' = transport (sym (λ i -> unfold-≈ i l l')) l≈'l'
≈→≈' : (l l' : L X) -> l ≈ l' -> l ≈' l'
≈→≈' l l' l≈l' = transport (λ i -> unfold-≈ i l l') l≈l'
-- Equivalence between the two definitions
module _ (X : Type ℓ) (R : X -> X -> Type ℓR) where
open module B = Bisim X R
open module BSum = BisimSum X R renaming (_≈_ to _≈S_)
open B.Inductive (next _≈_)
open BSum.Inductive (next _≈S_) renaming (_≈'_ to _≈S'_)
≈→≈Sum : (l l' : L X) -> l ≈ l' -> l ≈S l'
≈→≈Sum l l' l≈l' = BSum.≈'→≈ _ _(fix lem l l' (B.≈→≈' _ _ l≈l'))
where
lem : ▹ ((l l' : L X) -> l ≈' l' -> l ≈S' l') ->
(l l' : L X) -> l ≈' l' -> l ≈S' l'
lem _ (η x) (η y) H = inl (x , (y , (refl , (refl , (lower H)))))
lem _ (η x) (θ ly~) (n , y , eq , xRy) = inr (inl (x , y , n , refl , eq , xRy))
lem _ (θ lx~) (η y) (n , x , eq , xRy) = inr (inr (inl (x , y , n , eq , refl , xRy)))
lem IH (θ lx~) (θ ly~) H =
inr (inr (inr (lx~ , ly~ , refl , refl ,
λ t -> BSum.≈'→≈ (lx~ t) (ly~ t) (IH t (lx~ t) (ly~ t) (B.≈→≈' _ _ (H t))))))
≈Sum→≈ : (l l' : L X) -> l ≈S l' -> l ≈ l'
≈Sum→≈ l l' l≈Sl' = {!!}
where
lem : ▹ ((l l' : L X) -> l ≈S' l' -> l ≈' l') ->
(l l' : L X) -> l ≈S' l' -> l ≈' l'
lem _ l l' (inl (x , y , eq1 , eq2 , Rxy)) = (transport (λ i -> (sym eq1 i) ≈' (sym eq2 i)) (lift Rxy))
lem _ l l' (inr (inl (x , y , n , eq1 , eq2 , Rxy))) = {!!} -- NTS that l' is of the form θ(...)
-}
{-
module _ (X : Type) (R : X -> X -> Type ℓR) where
_≈^gl_ : L^gl X -> L^gl X -> Type ? where
-}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment