Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
7427d5e8
Commit
7427d5e8
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Results about intensional term syntax
parent
66d1c26a
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Syntax/IntensionalTerms/Results.agda
+147
-0
147 additions, 0 deletions
...ions/guarded-cubical/Syntax/IntensionalTerms/Results.agda
with
147 additions
and
0 deletions
formalizations/guarded-cubical/Syntax/IntensionalTerms/Results.agda
0 → 100644
+
147
−
0
View file @
7427d5e8
module Syntax.IntensionalTerms.Results where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Data.List
open import Syntax.Types
open import Syntax.IntensionalTerms
open import Syntax.IntensionalTerms.Induction
import Syntax.Nbe as Nbe
-- open import Syntax.Normalization
open import Cubical.HITs.PropositionalTruncation
private
variable
Δ Γ Θ Z Δ' Γ' Θ' Z' : Ctx
R S T U R' S' T' U' : Ty
γ γ' γ'' : Subst Δ Γ
δ δ' δ'' : Subst Θ Δ
θ θ' θ'' : Subst Z Θ
V V' V'' : Val Γ S
M M' M'' N N' : Comp Γ S
E E' E'' F F' : EvCtx Γ S T
ℓ ℓ' ℓ'' ℓ''' ℓ'''' : Level
{-
test-1 : E [ γ ∘s δ ]e ≡ E [ γ ]e [ δ ]e
test-1 = {!!}
test-2 : (F ∘E E) [ M ]∙ ≡ F [ E [ M ]∙ ]∙
test-2 = proof-by-normalization {!!}
-}
up-comp : (c : R ⊑ S) (d : S ⊑ T) ->
emb (c ∘⊑ d) ≡ ((emb d [ !s ,s var ]v) ∘V emb c)
dn-comp : (c : R ⊑ S) (d : S ⊑ T) ->
proj (c ∘⊑ d) ≡ (proj c ∘E proj d)
up-comp nat nat =
var
≡⟨ sym varβ ⟩
(var [ ids ,s var ]v)
≡⟨ (λ i -> (varβ {δ = !s} {V = var}) (~ i) [ ids ,s var ]v) ⟩
(var [ !s ,s var ]v [ ids ,s var ]v) ∎
up-comp nat inj-nat = {!!}
where
lem : injectN ≡ ((injectN [ {!!} ]v) ∘V var)
lem = {!!}
up-comp dyn dyn = {!!}
up-comp (ci ⇀ co) (ei ⇀ eo) =
lda (((proj (trans-⊑ ci ei) [ !s ]e) [ ret' var ]∙) >>
((app [ drop2nd ]c) >>
((vToE (emb (trans-⊑ co eo)) [ !s ]e) [ ret' var ]∙)))
≡⟨ (λ i -> lda (((dn-comp ci ei i [ !s ]e) [ ret' var ]∙) >>
((app [ drop2nd ]c) >>
((vToE (up-comp co eo i) [ !s ]e) [ ret' var ]∙)))) ⟩
lda ((((proj ci ∘E proj ei) [ !s ]e) [ ret' var ]∙) >>
((app [ drop2nd ]c) >>
((vToE ((emb eo [ !s ,s var ]v) ∘V emb co ) [ !s ]e) [ ret' var ]∙)))
≡⟨ congS lda ( {!!}) ⟩
lda (((((proj ci [ !s ]e) ∘E (proj ei [ !s ]e))) [ ret' var ]∙) >>
((app [ drop2nd ]c) >>
((vToE ((emb eo [ !s ,s var ]v) ∘V emb co ) [ !s ]e) [ ret' var ]∙)))
≡⟨ congS lda ( {!!}) ⟩
{-
lda (((((proj ei [ !s ]e))) [ ret' var ]∙) >>
(((proj ci [ !s ]e) [ ret' var ]∙) >>
((app [ {!!} ]c) >>
(((vToE (emb co ) [ !s ]e) [ ret' var ]∙) >>
((vToE (emb eo) [ !s ]e) [ ret' var ]∙)))))
≡⟨ cong lda {!!} ⟩
-}
lda (M1 [ (!s ∘s wk ,s (lda M2 [ wk ]v)) ,s var ]c)
≡⟨ congS lda (cong₂ _[_]c refl (cong₂ _,s_ (sym ,s-nat) refl)) ⟩
lda (M1 [ ((!s ,s lda M2) ∘s wk) ,s var ]c)
≡⟨ sym (lda-nat _ _) ⟩
((lda M1) [ !s ,s lda M2 ]v)
≡⟨ cong₂ _[_]v refl (sym lem) ⟩
((lda M1) [ (!s ,s var) ∘s (ids ,s lda M2) ]v)
≡⟨ substAssoc ⟩
((lda M1) [ !s ,s var ]v) ∘V lda M2 ∎
where
-- bind-nat : (bind M) [ γ ]e ≡ bind (M [ γ ∘s wk ,s var ]c)
M1 = ((proj ei [ !s ]e) [ ret' var ]∙) >>
((app [ drop2nd ]c) >> ((vToE (emb eo) [ !s ]e) [ ret' var ]∙))
M2 = ((proj ci [ !s ]e) [ ret' var ]∙) >>
((app [ drop2nd ]c) >> ((vToE (emb co) [ !s ]e) [ ret' var ]∙))
P = lda (M1 [ (!s ∘s wk ,s (lda M2 [ wk ]v)) ,s var ]c)
eq : P ≡ lda (((proj ei [ !s ]e) [ ret' var ]∙) >>
(((app [ drop2nd ]c) >> ((vToE (emb eo) [ !s ]e) [ ret' var ]∙))
[ (!s ∘s wk ,s (lda M2 [ wk ]v) ,s var) ∘s wk ,s var ]c))
eq = congS lda
(substPlugDist
∙ (cong₂ _[_]∙ bind-nat (substPlugDist
∙ cong₂ _[_]∙
(sym substAssoc ∙ cong₂ _[_]e refl []η)
(ret'-nat ∙ congS ret' varβ))))
lem : ∀ {V : Val Γ S} -> (!s ,s var) ∘s (ids ,s V) ≡ (!s ,s V)
lem = ,s-nat ∙ (cong₂ _,s_ []η varβ)
-- ,s-nat : (γ ,s V) ∘s δ ≡ ((γ ∘s δ) ,s (V [ δ ]v))
-- varβ : var [ δ ,s V ]v ≡ V
up-comp (ci ⇀ co) (inj-arr (ei ⇀ eo)) = {!!}
up-comp inj-nat dyn = {!!}
up-comp (inj-arr c) dyn = {!!}
dn-comp nat nat = sym ∘IdL
dn-comp nat inj-nat = sym ∘IdL
dn-comp dyn dyn = sym ∘IdL
dn-comp (ci ⇀ co) (ei ⇀ eo) = {!!}
dn-comp (ci ⇀ co) (inj-arr (ei ⇀ eo)) = {!!}
dn-comp inj-nat dyn = sym ∘IdR
dn-comp (inj-arr c) dyn = sym ∘IdR
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment