Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
6f392b91
Commit
6f392b91
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Construct dyn as a poset with perturbation monoids
parent
ef133b66
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Semantics/Concrete/PosetWithPtbs/DynPWP.agda
+118
-0
118 additions, 0 deletions
...rded-cubical/Semantics/Concrete/PosetWithPtbs/DynPWP.agda
with
118 additions
and
0 deletions
formalizations/guarded-cubical/Semantics/Concrete/PosetWithPtbs/DynPWP.agda
0 → 100644
+
118
−
0
View file @
6f392b91
{-# OPTIONS --rewriting --guarded #-}
{-# OPTIONS --lossy-unification #-}
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
open import Common.Later
module Semantics.Concrete.PosetWithPtbs.DynPWP (k : Clock) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Binary
open import Cubical.Data.Nat renaming (ℕ to Nat)
open import Cubical.Data.Sum
open import Cubical.Data.Unit
open import Cubical.Data.Empty
open import Common.LaterProperties
--open import Common.Preorder.Base
--open import Common.Preorder.Monotone
--open import Common.Preorder.Constructions
open import Semantics.Lift k
-- open import Semantics.Concrete.LiftPreorder k
open import Cubical.Relation.Binary.Poset
open import Common.Poset.Convenience
open import Common.Poset.Constructions
open import Common.Poset.Monotone
open import Semantics.MonotoneCombinators
open import Semantics.Concrete.PosetWithPtbs.Base k
open import Semantics.Concrete.PosetWithPtbs.Constructions k
open import Semantics.LockStepErrorOrdering k
open BinaryRelation
open LiftPoset
open ClockedCombinators k
open PosetWithPtb
private
variable
ℓ ℓ' : Level
▹_ : Type ℓ → Type ℓ
▹_ A = ▹_,_ k A
module _ {ℓ : Level} where
DynPWP' : (▹ PosetWithPtb ℓ ℓ ℓ) -> PosetWithPtb ℓ ℓ ℓ
DynPWP' D~ = NatPWP ⊎PWP (PWP▸ (λ t -> (D~ t) ==>L (D~ t)))
DynPWP : PosetWithPtb ℓ ℓ ℓ
DynPWP = fix DynPWP'
unfold-DynPWP : DynPWP ≡ DynPWP' (next DynPWP)
unfold-DynPWP = fix-eq DynPWP'
-- This is slow
DynPWP-Sum : DynPWP' (next DynPWP) ≡ NatPWP ⊎PWP (PWP▹ (DynPWP ==>L DynPWP))
DynPWP-Sum = DynPWP' (next DynPWP)
≡⟨ refl ⟩
NatPWP ⊎PWP (PWP▸ λ t -> (next DynPWP t) ==>L (next DynPWP t))
≡⟨ refl ⟩
NatPWP ⊎PWP (PWP▸ λ t -> (DynPWP) ==>L (DynPWP))
≡⟨ refl ⟩
(NatPWP ⊎PWP (PWP▸ (next ((DynPWP) ==>L (DynPWP)))))
-- ≡⟨ (λ i -> NatPWP ⊎PWP (PWP▸-next {!DynPWP!} i)) ⟩
≡⟨ refl ⟩
NatPWP ⊎PWP (PWP▹ (DynPWP ==>L DynPWP)) ∎
DynP : Poset ℓ ℓ
DynP = DynPWP .P
DynP' : Poset ℓ ℓ
DynP' = DynPWP' (next DynPWP) .P
unfold-DynP : DynP ≡ DynP'
unfold-DynP i = (fix-eq DynPWP' i) .P
unfold-⟨DynP⟩ : ⟨ DynP ⟩ ≡ ⟨ DynP' ⟩
unfold-⟨DynP⟩ i = ⟨ unfold-DynP i ⟩
DynP-Sum : DynP' ≡ ℕ ⊎p ((▸'' k) (DynP ==> 𝕃 DynP))
DynP-Sum = {!DynP!}
{-
unfold-⟨DynP⟩ : ⟨ DynP ⟩ ≡ ⟨ DynP' (next DynP) ⟩
unfold-⟨DynP⟩ = λ i → ⟨ unfold-DynP i ⟩
DynP-Sum : DynP ≡ ℕ ⊎p ((▸'' k) (DynP ==> 𝕃 DynP))
DynP-Sum = unfold-DynP
InjNat : ⟨ ℕ ==> DynP ⟩
InjNat = mCompU (mTransport (sym DynP-Sum)) σ1
InjArr : ⟨ (DynP ==> 𝕃 DynP) ==> DynP ⟩
InjArr = mCompU (mTransport (sym DynP-Sum)) (mCompU σ2 Next)
ProjNat : ⟨ DynP ==> 𝕃 ℕ ⟩
ProjNat = mCompU (Case' mRet (K _ ℧)) (mTransport DynP-Sum)
ProjArr : ⟨ DynP ==> 𝕃 (DynP ==> 𝕃 DynP) ⟩
ProjArr = {!!}
-}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment