Skip to content
Snippets Groups Projects
Commit 5ea434d0 authored by Eric Giovannini's avatar Eric Giovannini
Browse files

New formulation of Dyn as a Poset

parent 28f42be9
No related branches found
No related tags found
No related merge requests found
{-# OPTIONS --rewriting --guarded #-}
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
{-# OPTIONS --lossy-unification #-}
open import Common.Later
module Semantics.Concrete.DynNew (k : Clock) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Binary
open import Cubical.Data.Nat renaming (ℕ to Nat)
open import Cubical.Data.Sum
open import Cubical.Data.Unit
open import Cubical.Data.Empty
open import Common.LaterProperties
--open import Common.Preorder.Base
--open import Common.Preorder.Monotone
--open import Common.Preorder.Constructions
open import Semantics.Lift k
-- open import Semantics.Concrete.LiftPreorder k
open import Cubical.Relation.Binary.Poset
open import Common.Poset.Convenience
open import Common.Poset.Constructions
open import Common.Poset.Monotone
open import Semantics.MonotoneCombinators
open import Semantics.LockStepErrorOrdering k
open BinaryRelation
open LiftPoset
open ClockedCombinators k
private
variable
ℓ ℓ' : Level
▹_ : Type ℓ → Type ℓ
▹_ A = ▹_,_ k A
-- Can have type Poset ℓ ℓ
DynP' : (D : ▹ Poset ℓ-zero ℓ-zero) -> Poset ℓ-zero ℓ-zero
DynP' D = ℕ ⊎p (▸' k (λ t → D t ==> 𝕃 (D t)))
DynP : Poset ℓ-zero ℓ-zero
DynP = fix DynP'
unfold-DynP : DynP ≡ DynP' (next DynP)
unfold-DynP = fix-eq DynP'
unfold-⟨DynP⟩ : ⟨ DynP ⟩ ≡ ⟨ DynP' (next DynP) ⟩
unfold-⟨DynP⟩ = λ i → ⟨ unfold-DynP i ⟩
DynP-Sum : DynP ≡ ℕ ⊎p ((▸'' k) (DynP ==> 𝕃 DynP))
DynP-Sum = unfold-DynP
InjNat : ⟨ ℕ ==> DynP ⟩
InjNat = mCompU (mTransport (sym DynP-Sum)) σ1
InjArr : ⟨ (DynP ==> 𝕃 DynP) ==> DynP ⟩
InjArr = mCompU (mTransport (sym DynP-Sum)) (mCompU σ2 Next)
ProjNat : ⟨ DynP ==> 𝕃 ℕ ⟩
ProjNat = mCompU (Case' mRet (K _ ℧)) (mTransport DynP-Sum)
ProjArr : ⟨ DynP ==> 𝕃 (DynP ==> 𝕃 DynP) ⟩
ProjArr = {!!}
{-
data Dyn' (D : ▹ Poset ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
nat : Nat -> Dyn' D
fun : ▸ (λ t → MonFun (D t) (𝕃 (D t))) -> Dyn' D
Dyn'-iso : (D : ▹ Poset ℓ ℓ') -> Iso (Dyn' D) (Nat ⊎ (▸ (λ t → MonFun (D t) (𝕃 (D t)))))
Dyn'-iso D = iso
(λ { (nat n) → inl n ; (fun f~) → inr f~})
(λ { (inl n) → nat n ; (inr f~) → fun f~})
(λ { (inl n) → refl ; (inr f~) → refl})
(λ { (nat x) → refl ; (fun x) → refl})
DynP' :
(D : ▹ Poset ℓ-zero ℓ-zero) -> Poset ℓ-zero ℓ-zero
DynP' D = Dyn' D ,
posetstr order
(isposet isSetDynP' dyn-ord-prop dyn-ord-refl dyn-ord-trans dyn-ord-antisym)
where
order : Dyn' D → Dyn' D → Type
order (nat n) (nat m) = (n ≡ m)
order (fun f~) (fun g~) = ▸ λ t → (f~ t) ≤mon (g~ t)
order _ _ = ⊥
isSetDynP' : isSet (Dyn' D)
isSetDynP' = isSetRetract
(Iso.fun (Dyn'-iso D)) (Iso.inv (Dyn'-iso D)) (Iso.leftInv (Dyn'-iso D))
(isSet⊎ isSetℕ (isSet▸ λ t -> MonFunIsSet))
dyn-ord-refl : isRefl order
dyn-ord-refl (nat n) = refl
dyn-ord-refl (fun f~) = λ t → ≤mon-refl (f~ t)
dyn-ord-prop : isPropValued order
dyn-ord-prop (nat n) (nat m) = isSetℕ n m
dyn-ord-prop (fun f~) (fun g~) = isProp▸ (λ t -> ≤mon-prop (f~ t) (g~ t))
dyn-ord-trans : isTrans order
dyn-ord-trans (nat n1) (nat n2) (nat n3) n1≡n2 n2≡n3 =
n1≡n2 ∙ n2≡n3
dyn-ord-trans (fun f1~) (fun f2~) (fun f3~) H1 H2 =
λ t → ≤mon-trans (f1~ t) (f2~ t) (f3~ t) (H1 t) (H2 t)
dyn-ord-antisym : isAntisym order
dyn-ord-antisym (nat n) (nat m) n≡m m≡n = cong nat n≡m
dyn-ord-antisym (fun f~) (fun g~) d≤d' d'≤d =
cong fun (eq▸ f~ g~ λ t -> ≤mon-antisym (f~ t) (g~ t) (d≤d' t) (d'≤d t))
DynP : Poset ℓ-zero ℓ-zero
DynP = fix DynP'
unfold-DynP : DynP ≡ DynP' (next DynP)
unfold-DynP = fix-eq DynP'
unfold-⟨DynP⟩ : ⟨ DynP ⟩ ≡ ⟨ DynP' (next DynP) ⟩
unfold-⟨DynP⟩ = λ i → ⟨ unfold-DynP i ⟩
unfold-DynP-rel : PathP (λ i -> {!lift (unfold-⟨DynP⟩ i)!}) (rel DynP) (rel (DynP' (next DynP)))
unfold-DynP-rel = {!!}
-- Converting from the underlying set of DynP' to the underlying
-- set of DynP
DynP'→DynP : ⟨ DynP' (next DynP) ⟩ -> ⟨ DynP ⟩
DynP'→DynP d = transport (sym (λ i -> ⟨ unfold-DynP i ⟩)) d
DynP→DynP' : ⟨ DynP ⟩ -> ⟨ DynP' (next DynP) ⟩
DynP→DynP' d = transport (λ i → ⟨ unfold-DynP i ⟩) d
rel-DynP'→rel-DynP : ∀ d1 d2 ->
rel (DynP' (next DynP)) d1 d2 ->
rel DynP (DynP'→DynP d1) (DynP'→DynP d2)
rel-DynP'→rel-DynP d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP (~ i))
(transport-filler (λ j → ⟨ unfold-DynP (~ j) ⟩) d1 i)
(transport-filler (λ j → ⟨ unfold-DynP (~ j) ⟩) d2 i))
d1≤d2
rel-DynP→rel-DynP' : ∀ d1 d2 ->
rel DynP d1 d2 ->
rel (DynP' (next DynP)) (DynP→DynP' d1) (DynP→DynP' d2)
rel-DynP→rel-DynP' d1 d2 d1≤d2 = transport
(λ i → rel (unfold-DynP i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d1 i)
(transport-filler (λ j -> ⟨ unfold-DynP j ⟩) d2 i))
d1≤d2
DynP-equiv : PosetEquiv DynP (DynP' (next DynP))
DynP-equiv = pathToEquiv unfold-⟨DynP⟩ ,
makeIsPosetEquiv (pathToEquiv unfold-⟨DynP⟩)
(λ d1 d2 d1≤d2 -> rel-DynP→rel-DynP' d1 d2 d1≤d2)
(λ d1 d2 d1≤d2 -> {!rel-DynP'→rel-DynP d1 d2 d1≤d2!})
InjNat : ⟨ ℕ ==> DynP ⟩
InjNat = record {
f = λ n -> DynP'→DynP (nat n) ;
isMon = λ {n} {m} n≡m ->
rel-DynP'→rel-DynP (nat n) (nat m) n≡m }
InjArr : ⟨ (DynP ==> 𝕃 DynP) ==> DynP ⟩
InjArr = record {
f = λ f -> DynP'→DynP (fun (next f)) ;
isMon = λ {f1} {f2} f1≤f2 ->
rel-DynP'→rel-DynP (fun (next f1)) (fun (next f2)) λ t -> f1≤f2 }
-}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment