Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
585e0e55
Commit
585e0e55
authored
1 year ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
Elimination principle for intensional terms
parent
37dfd372
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Syntax/IntensionalTerms/Elim.agda
+347
-0
347 additions, 0 deletions
...zations/guarded-cubical/Syntax/IntensionalTerms/Elim.agda
with
347 additions
and
0 deletions
formalizations/guarded-cubical/Syntax/IntensionalTerms/Elim.agda
0 → 100644
+
347
−
0
View file @
585e0e55
{-# OPTIONS --lossy-unification #-}
module Syntax.IntensionalTerms.Elim where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Data.List
open import Syntax.IntensionalTerms
open import Syntax.Types
private
variable
Δ Γ Θ Z Δ' Γ' Θ' Z' : Ctx
R S T U R' S' T' U' : Ty
γ γ' γ'' : Subst Δ Γ
δ δ' δ'' : Subst Θ Δ
θ θ' θ'' : Subst Z Θ
V V' V'' : Val Γ S
M M' M'' N N' : Comp Γ S
E E' E'' F F' : EvCtx Γ S T
ℓ ℓ' ℓ'' ℓ''' ℓ'''' : Level
ℓs ℓv ℓe ℓc : Level
module Elim
(Bs : ∀ {Δ} {Γ} → Subst Δ Γ → Type ℓs)
(Bv : ∀ {Γ} {R} → Val Γ R → Type ℓv)
(Bc : ∀ {Γ} {R} → Comp Γ R → Type ℓc)
(Be : ∀ {Γ R S} → EvCtx Γ R S → Type ℓe)
where
record Cases : Type (ℓ-max (ℓ-max ℓs ℓv) (ℓ-max ℓc ℓe)) where
field
-- Substitutions
casesIds : Bs {Γ} ids
cases∘s : Bs γ → Bs δ → Bs (γ ∘s δ)
cases!s : Bs {Δ} !s
cases,s : Bs {Δ = Δ} {Γ = Γ} γ → Bv {R = R} V → Bs (γ ,s V)
casesWk : Bs (wk {S = S} {Γ = Γ})
-- Values
cases[]v : Bv V → Bs γ → Bv (V [ γ ]v)
casesVar : Bv {Γ = (R ∷ Γ)} var
casesZro : Bv zro
casesSuc : Bv suc
casesLda : Bc M → Bv (lda M)
casesInjN : Bv injectN
casesInjArr : Bv injectArr
casesMapDyn : Bv V → Bv V' → Bv (mapDyn V V')
-- Computations
cases[]∙ : Be E → Bc M → Bc (E [ M ]∙)
cases[]c : Bc M → Bs γ → Bc (M [ γ ]c)
casesErr : Bc {R = R} err
casesTick : Bc M → Bc (tick M)
casesRet : Bc {R = R} ret
casesApp : Bc (app {S = S}{T = T})
casesMatchNat : Bc M → Bc M' → Bc (matchNat M M' )
casesMatchDyn : Bc M → Bc M' → Bc (matchDyn M M' )
-- Evaluation Contexts
cases∙E : Be {Γ = Γ}{R = R} ∙E
cases∘E : Be E → Be F → Be (E ∘E F)
cases[]e : Be E → Bs γ → Be (E [ γ ]e)
casesBind : Bc M → Be (bind M)
-- ↑subst : Subst Δ Γ → Subst (R ∷ Δ) (R ∷ Γ)
-- ↑subst γ = γ ∘s wk ,s var
↑Bs : Bs γ → Bs (↑subst {R = R} γ)
↑Bs bγ = cases,s (cases∘s bγ casesWk) casesVar
field
------------------------------------
-- Equations
------------------------------------
-- Substitutions
cases∘IdL-S : ∀ (b : Bs γ) →
PathP (λ i -> Bs (∘IdL {γ = γ} i))
(cases∘s casesIds b) b
cases∘IdR-S : ∀ (b : Bs γ) →
PathP (λ i -> Bs (∘IdR {γ = γ} i))
(cases∘s b casesIds) b
cases∘Assoc-S : ∀ (bγ : Bs γ) (bδ : Bs δ) (bθ : Bs θ) →
PathP (λ i -> Bs (∘Assoc {γ = γ} {δ = δ} {θ = θ} i))
(cases∘s bγ (cases∘s bδ bθ)) (cases∘s (cases∘s bγ bδ) bθ)
cases[]η : ∀ (b : Bs γ) →
PathP (λ i -> Bs ([]η {γ = γ} i))
b cases!s
casesWkβ : ∀ (bδ : Bs δ) (bV : Bv V) →
PathP (λ i -> Bs (wkβ {δ = δ} {V = V} i))
(cases∘s casesWk (cases,s bδ bV)) bδ
cases,sη : ∀ (bδ : Bs δ) →
PathP (λ i -> Bs (,sη {δ = δ} i))
bδ (cases,s (cases∘s casesWk bδ) (cases[]v casesVar bδ))
casesIsSetSubst : ∀ (γ : Subst Δ Γ) → isSet (Bs γ)
-- Values
casesSubstId-V : ∀ (b : Bv V) →
PathP (λ i -> Bv (substId {V = V} i)) (cases[]v b casesIds) b
casesSubstAssoc-V : ∀ (bV : Bv V) (bδ : Bs δ) (bγ : Bs γ) →
PathP (λ i -> Bv (substAssoc {V = V} {δ = δ} {γ = γ} i))
(cases[]v bV (cases∘s bδ bγ)) (cases[]v (cases[]v bV bδ) bγ)
casesVarβ : ∀ (bδ : Bs δ) (bV : Bv V) →
PathP (λ i -> Bv (varβ {δ = δ} {V = V} i))
(cases[]v casesVar (cases,s bδ bV)) bV
casesFun-η : ∀ (bV : Bv V) →
PathP (λ i -> Bv (fun-η {V = V} i))
bV
(casesLda (cases[]c casesApp (cases,s (cases,s cases!s (cases[]v bV casesWk)) casesVar)))
casesIsSetVal : ∀ (V : Val Γ S) → isSet (Bv V)
-- Computations
casesPlugId : ∀ (bM : Bc M) →
PathP (λ i -> Bc (plugId {M = M} i)) (cases[]∙ cases∙E bM) bM
casesPlugAssoc : ∀ (bF : Be F) (bE : Be E) (bM : Bc M) →
PathP (λ i -> Bc (plugAssoc {F = F} {E = E} {M = M} i))
(cases[]∙ (cases∘E bF bE) bM) (cases[]∙ bF (cases[]∙ bE bM))
casesSubstId-C : ∀ (bM : Bc M) →
PathP (λ i -> Bc (substId {M = M} i)) (cases[]c bM casesIds) bM
casesSubstAssoc-C : ∀ (bM : Bc M) (bδ : Bs δ) (bγ : Bs γ) →
PathP (λ i -> Bc (substAssoc {M = M} {δ = δ} {γ = γ} i))
(cases[]c bM (cases∘s bδ bγ)) (cases[]c (cases[]c bM bδ) bγ)
casesSubstPlugDist : ∀ (bE : Be E) (bM : Bc M) (bγ : Bs γ) →
PathP (λ i -> Bc (substPlugDist {E = E} {M = M} {γ = γ} i))
(cases[]c (cases[]∙ bE bM) bγ) (cases[]∙ (cases[]e bE bγ) (cases[]c bM bγ))
casesStrictness : ∀ (bE : Be E) →
PathP (λ i -> Bc (strictness {E = E} i))
(cases[]∙ bE (cases[]c casesErr cases!s)) (cases[]c casesErr cases!s)
casesRet-β : ∀ (bM : Bc M) →
PathP (λ i -> Bc (ret-β {M = M} i))
(cases[]∙ (cases[]e (casesBind bM) casesWk)
(cases[]c casesRet (cases,s cases!s casesVar)))
bM
casesFun-β : ∀ (bM : Bc M) →
PathP (λ i -> Bc (fun-β {M = M} i))
(cases[]c casesApp
(cases,s (cases,s cases!s (cases[]v (casesLda bM) casesWk)) casesVar))
bM
casesMatchNatβz : ∀ {Kz : Comp Γ S} {Ks : Comp (nat ∷ Γ) S}
(bKz : Bc Kz) (bKs : Bc Ks) →
PathP (λ i -> Bc (matchNatβz Kz Ks i))
(cases[]c (casesMatchNat bKz bKs) (cases,s casesIds (cases[]v casesZro cases!s)))
bKz
casesMatchNatβs : ∀ {Kz : Comp Γ S} {Ks : Comp (nat ∷ Γ) S}
(bKz : Bc Kz) (bKs : Bc Ks) →
PathP (λ i -> Bc (matchNatβs Kz Ks i))
(cases[]c
(casesMatchNat bKz bKs)
(cases,s casesWk (cases[]v casesSuc (cases,s cases!s casesVar))))
bKs
casesMatchNatη : ∀ {M : Comp (nat ∷ Γ) S} (bM : Bc M) →
PathP (λ i -> Bc (matchNatη {M = M} i))
bM
(casesMatchNat
(cases[]c bM (cases,s casesIds (cases[]v casesZro cases!s)))
(cases[]c bM (cases,s casesWk (cases[]v casesSuc (cases,s cases!s casesVar)))))
casesMatchDynβn : {Kn : Comp (nat ∷ Γ) S} {Kf : Comp ((dyn ⇀ dyn) ∷ Γ) S} {V : Val Γ nat}
(bKn : Bc Kn) (bKf : Bc Kf) (bV : Bv V) →
PathP (λ i -> Bc (matchDynβn Kn Kf V i))
(cases[]c
(casesMatchDyn bKn bKf)
(cases,s casesIds (cases[]v casesInjN (cases,s cases!s bV))))
(cases[]c bKn (cases,s casesIds bV))
casesMatchDynβf : {Kn : Comp (nat ∷ Γ) S} {Kf : Comp ((dyn ⇀ dyn) ∷ Γ) S} {V : Val Γ (dyn ⇀ dyn)}
(bKn : Bc Kn) (bKf : Bc Kf) (bV : Bv V) →
PathP (λ i -> Bc (matchDynβf Kn Kf V i))
(cases[]c
(casesMatchDyn bKn bKf)
(cases,s casesIds (cases[]v casesInjArr (cases,s cases!s bV))))
(cases[]c bKf (cases,s casesIds bV))
casesMatchDynSubst : {Kn : Comp (nat ∷ Γ) R} {Kf : Comp ((dyn ⇀ dyn) ∷ Γ) R} {γ : Subst Δ Γ}
(bKn : Bc Kn) (bKf : Bc Kf) (bγ : Bs γ) →
PathP (λ i -> Bc (matchDynSubst Kn Kf γ i))
(cases[]c (casesMatchDyn bKn bKf) (↑Bs bγ))
(casesMatchDyn (cases[]c bKn (↑Bs bγ)) (cases[]c bKf (↑Bs bγ)))
casesTick-strictness : ∀ (bM : Bc M) (bE : Be E) →
PathP (λ i -> Bc (tick-strictness {E = E} {M = M} i))
(cases[]∙ bE (casesTick bM)) (casesTick (cases[]∙ bE bM))
casesTickSubst : ∀ (bM : Bc M) (bγ : Bs γ) →
PathP (λ i -> Bc (tickSubst {M = M} {γ = γ} i))
(cases[]c (casesTick bM) bγ) (casesTick (cases[]c bM bγ))
casesIsSetComp : ∀ (M : Comp Γ S) → isSet (Bc M)
-- Evaluation Contexts
cases∘IdL-E : ∀ (bE : Be E) →
PathP (λ i -> Be (∘IdL {E = E} i))
(cases∘E cases∙E bE) bE
cases∘IdR-E : ∀ (bE : Be E) →
PathP (λ i -> Be (∘IdR {E = E} i))
(cases∘E bE cases∙E) bE
cases∘Assoc-E : ∀ (bE : Be E) (bF : Be F) (bF' : Be F') →
PathP (λ i -> Be (∘Assoc {E = E} {F = F} {F' = F'} i))
(cases∘E bE (cases∘E bF bF')) (cases∘E (cases∘E bE bF) bF')
casesSubstId-E : ∀ (bE : Be E) →
PathP (λ i -> Be (substId {E = E} i))
(cases[]e bE casesIds) bE
casesSubstAssoc-E : ∀ (bE : Be E) (bγ : Bs γ) (bδ : Bs δ) →
PathP (λ i -> Be (substAssoc {E = E} {γ = γ} {δ = δ} i))
(cases[]e bE (cases∘s bγ bδ)) (cases[]e (cases[]e bE bγ) bδ)
cases∙substDist : ∀ (bγ : Bs γ) →
PathP (λ i -> Be {S = S} (∙substDist {γ = γ} i))
(cases[]e cases∙E bγ) cases∙E
cases∘substDist : ∀ (bE : Be E) (bF : Be F) (bγ : Bs γ) →
PathP (λ i -> Be (∘substDist {E = E} {F = F} {γ = γ} i))
(cases[]e (cases∘E bE bF) bγ) (cases∘E (cases[]e bE bγ) (cases[]e bF bγ))
casesRet-η : ∀ (bE : Be E) →
PathP (λ i -> Be (ret-η {E = E} i))
bE
(casesBind (cases[]∙ (cases[]e bE casesWk)
(cases[]c casesRet (cases,s cases!s casesVar))))
casesIsSetEvCtx : ∀ (E : EvCtx Γ S T) → isSet (Be E)
module _ (cases : Cases) where
open Cases cases
casesBs : ∀ (γ : Subst Δ Γ) → Bs γ
casesBv : ∀ (V : Val Γ R) → Bv V
casesBc : ∀ (M : Comp Γ R) → Bc M
casesBe : ∀ (E : EvCtx Γ R S) → Be E
-- Substitutions
casesBs ids = casesIds
casesBs (γ ∘s δ) = cases∘s (casesBs γ) (casesBs δ)
casesBs !s = cases!s
casesBs (γ ,s V) = cases,s (casesBs γ) (casesBv V)
casesBs wk = casesWk
casesBs (∘IdL {γ = γ} i) = cases∘IdL-S (casesBs γ) i
casesBs (∘IdR {γ = γ} i) = cases∘IdR-S (casesBs γ) i
casesBs (∘Assoc {γ = γ} {δ = δ} {θ = θ} i) =
cases∘Assoc-S (casesBs γ) (casesBs δ) (casesBs θ) i
casesBs ([]η {γ = γ} i) = cases[]η (casesBs γ) i
casesBs (wkβ {δ = δ} {V = V} i) = casesWkβ (casesBs δ) (casesBv V) i
casesBs (,sη {δ = δ} i) = cases,sη (casesBs δ) i
casesBs (isSetSubst γ γ' p q i j) =
isOfHLevel→isOfHLevelDep 2 casesIsSetSubst (casesBs γ) (casesBs γ')
(cong casesBs p) (cong casesBs q) (isSetSubst γ γ' p q) i j
-- Values
casesBv (V [ γ ]v) = cases[]v (casesBv V) (casesBs γ)
casesBv var = casesVar
casesBv zro = casesZro
casesBv suc = casesSuc
casesBv (lda M) = casesLda (casesBc M)
casesBv injectN = casesInjN
casesBv injectArr = casesInjArr
casesBv (mapDyn Vn Vf) = casesMapDyn (casesBv Vn) (casesBv Vf)
casesBv (substId {V = V} i) = casesSubstId-V (casesBv V) i
casesBv (substAssoc {V = V} {δ = δ} {γ = γ} i) =
casesSubstAssoc-V (casesBv V) (casesBs δ) (casesBs γ) i
casesBv (varβ {δ = δ} {V = V} i) = casesVarβ (casesBs δ) (casesBv V) i
casesBv (fun-η {V = V} i) = casesFun-η (casesBv V) i
casesBv (isSetVal V V' p q i j) =
isOfHLevel→isOfHLevelDep 2 casesIsSetVal (casesBv V) (casesBv V')
(cong casesBv p) (cong casesBv q) (isSetVal V V' p q) i j
-- Computations
casesBc (E [ M ]∙) = cases[]∙ (casesBe E) (casesBc M)
casesBc (M [ γ ]c) = cases[]c (casesBc M) (casesBs γ)
casesBc err = casesErr
casesBc ret = casesRet
casesBc app = casesApp
casesBc (matchNat M M') = casesMatchNat (casesBc M) (casesBc M')
casesBc (matchDyn M M') = casesMatchDyn (casesBc M) (casesBc M')
casesBc (tick M) = casesTick (casesBc M)
casesBc (plugId {M = M} i) = casesPlugId (casesBc M) i
casesBc (plugAssoc {F = F} {E = E} {M = M} i) =
casesPlugAssoc (casesBe F) (casesBe E) (casesBc M) i
casesBc (substId {M = M} i) = casesSubstId-C (casesBc M) i
casesBc (substAssoc {M = M} {δ = δ} {γ = γ} i) =
casesSubstAssoc-C (casesBc M) (casesBs δ) (casesBs γ) i
casesBc (substPlugDist {E = E} {M = M} {γ = γ} i) =
casesSubstPlugDist (casesBe E) (casesBc M) (casesBs γ) i
casesBc (strictness {E = E} i) = casesStrictness (casesBe E) i
casesBc (ret-β {M = M} i) = casesRet-β (casesBc M) i
casesBc (fun-β {M = M} i) = casesFun-β (casesBc M) i
casesBc (matchNatβz M M' i) = casesMatchNatβz (casesBc M) (casesBc M') i
casesBc (matchNatβs M M' i) = casesMatchNatβs (casesBc M) (casesBc M') i
casesBc (matchNatη {M = M} i) = casesMatchNatη (casesBc M) i
casesBc (matchDynβn M M' V i) = casesMatchDynβn (casesBc M) (casesBc M') (casesBv V) i
casesBc (matchDynβf M M' V i) = casesMatchDynβf (casesBc M) (casesBc M') (casesBv V) i
casesBc (matchDynSubst M M' γ i) = casesMatchDynSubst (casesBc M) (casesBc M') (casesBs γ) i
casesBc (tick-strictness {E = E} {M = M} i) = casesTick-strictness (casesBc M) (casesBe E ) i
casesBc (tickSubst {M = M} {γ = γ} i) = casesTickSubst (casesBc M) (casesBs γ) i
casesBc (isSetComp M M' p q i j) =
isOfHLevel→isOfHLevelDep 2 casesIsSetComp (casesBc M) (casesBc M')
(cong casesBc p) (cong casesBc q) (isSetComp M M' p q) i j
-- Evaluation Contexts
casesBe ∙E = cases∙E
casesBe (E ∘E F) = cases∘E (casesBe E) (casesBe F)
casesBe (∘IdL {E = E} i) = cases∘IdL-E (casesBe E) i
casesBe (∘IdR {E = E} i) = cases∘IdR-E (casesBe E) i
casesBe (∘Assoc {E = E} {F = F} {F' = F'} i) =
cases∘Assoc-E (casesBe E) (casesBe F) (casesBe F') i
casesBe (E [ γ ]e) = cases[]e (casesBe E) (casesBs γ)
casesBe (bind M) = casesBind (casesBc M)
casesBe (substId {E = E} i) = casesSubstId-E (casesBe E) i
casesBe (substAssoc {E = E} {γ = γ} {δ = δ} i) =
casesSubstAssoc-E (casesBe E) (casesBs γ) (casesBs δ) i
casesBe (∙substDist {γ = γ} i) = cases∙substDist (casesBs γ) i
casesBe (∘substDist {E = E} {F = F} {γ = γ} i) =
cases∘substDist (casesBe E) (casesBe F) (casesBs γ) i
casesBe (ret-η {E = E} i) = casesRet-η (casesBe E) i
casesBe (isSetEvCtx E F p q i j) =
isOfHLevel→isOfHLevelDep 2 casesIsSetEvCtx (casesBe E) (casesBe F)
(cong casesBe p) (cong casesBe q) (isSetEvCtx E F p q) i j
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment