Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
58322c81
Commit
58322c81
authored
2 years ago
by
Eric Giovannini
Browse files
Options
Downloads
Patches
Plain Diff
New defintion of Dyn; changes to EP pairs
parent
9cbd06d9
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/ErrorDomains.agda
+68
-52
68 additions, 52 deletions
formalizations/guarded-cubical/ErrorDomains.agda
with
68 additions
and
52 deletions
formalizations/guarded-cubical/ErrorDomains.agda
+
68
−
52
View file @
58322c81
{-# OPTIONS --cubical --rewriting --guarded #-}
-- to allow opening this module in other files while there are still holes
{-# OPTIONS --allow-unsolved-metas #-}
open import Later
module ErrorDomains(k : Clock) where
...
...
@@ -65,6 +68,7 @@ mapL' : (A -> B) -> ▹ (L℧ A -> L℧ B) -> L℧ A -> L℧ B
mapL' f map_rec (η x) = η (f x)
mapL' f map_rec ℧ = ℧
mapL' f map_rec (θ l_la) = θ (map_rec ⊛ l_la)
-- mapL' f map_rec (θ-next x i) = θ-next {!!} {!!}
mapL : (A -> B) -> L℧ A -> L℧ B
mapL f = fix (mapL' f)
...
...
@@ -161,7 +165,7 @@ map-comp : {A B C : Set} (g : B -> C) (f : A -> B) (x : ▹_,_ k _) ->
map-comp g f x = -- could just say refl for the whole thing
map▹ g (map▹ f x) ≡⟨ refl ⟩
(λ α -> g ((map▹ f x) α)) ≡⟨ refl ⟩
(λ α -> g ((λ β -> f (x β)) α)) ≡⟨ refl ⟩
--
(λ α -> g ((λ β -> f (x β)) α)) ≡⟨ refl ⟩
(λ α -> g (f (x α))) ≡⟨ refl ⟩
map▹ (g ∘ f) x ∎
...
...
@@ -226,26 +230,49 @@ monad-assoc = fix lem
-- bind (θ ( (λ la -> bind la f) <$> x)) g ≡⟨ {!!} ⟩
--------------------------------------------------------------------------
-- 1. Define denotational semantics for gradual STLC and show soundness of term precision
-- 1a. Define interpretation of terms of gradual CBV cast calculus (STLC + casts)
-- i) Semantic domains
-- ii) Term syntax (intrinsically typed, de Bruijn)
-- iii) Denotation function
-- 1b. Soundness of term precision with equational theory only (no ordering)
-- The language supports Dyn, CBV functions, nat
-- Dyn as a predomain
data Dyn' (D : ▹ Type) : Type where
data Dyn' (D : ▹ Type) : Type where
nat : ℕ -> Dyn' D
arr :
(▸ D
-> L℧ (
▸ D
)) -> Dyn' D
arr :
▸ (λ t → D t
-> L℧ (
D t
)) -> Dyn' D
Dyn : Type
Dyn = fix Dyn'
-- Embedding-projection pairs
record EP (A B : Set) : Set where
field
emb : A -> B
proj : B -> L℧ A
retract :
proj ∘ emb ≡ ret
-- E-P Pair for a type with itself
EP-id : (A : Type) -> EP A A
EP-id A = record {
emb = id;
proj = ret }
-- Composing EP pairs
EP-comp : {A B C : Type} -> EP A B -> EP B C -> EP A C
EP-comp epAB epBC = record {
emb = λ a -> emb epBC (emb epAB a) ;
proj = λ c -> bind (proj epBC c) (proj epAB) }
where open EP
-- E-P Pair for nat
...
...
@@ -268,66 +295,52 @@ retraction-nat n =
EP-nat : EP ℕ Dyn
EP-nat = record {
emb = e-nat;
proj = p-nat;
retract = funExt retraction-nat }
proj = p-nat }
-- E-P Pair for function types
e-fun : (Dyn -> L℧ Dyn) -> Dyn
e-fun f = transport
(sym (fix-eq Dyn'))
(arr λ (x : ▹ Dyn) →
θ (λ t -> mapL next (f (x t))))
-- E-P Pair for functions Dyn to L℧ Dyn
apply : Tick k -> ▹ Dyn -> Dyn
apply t l_dyn = l_dyn t
e-fun : (Dyn -> L℧ Dyn) -> Dyn
e-fun f = transport (sym (fix-eq Dyn'))
(arr (next f))
p-fun' : Dyn' (next Dyn) -> L℧ (Dyn -> L℧ Dyn)
p-fun' (nat n) = ℧
p-fun' (arr f) = ret λ d ->
θ (λ t →
mapL (apply t) (f (next d))
-- doesn't work:
-- mapL (\ (l_dyn : ▹ Dyn) -> l_dyn t) (f (next d))
)
-- f : ▸ next Dyn → L℧ (▸ next Dyn)
-- which is equal to
-- ▹ Dyn -> L℧ (▹ Dyn)
p-fun' (nat x) = ℧
p-fun' (arr x) = θ (ret <$> x) -- could also define using tick
p-fun : Dyn -> L℧ (Dyn -> L℧ Dyn)
p-fun d = p-fun' (transport (fix-eq Dyn') d)
theta-lem : (t : Tick k) (la : L℧ A) ->
θ (λ t -> la) ≡ θ (next la)
theta-lem t la = refl
retraction-fun : (h : Dyn -> L℧ Dyn) ->
p-fun (e-fun h) ≡ {!!}
retraction-fun h = {!!}
fun-retract : (f : (Dyn -> L℧ Dyn)) ->
p-fun (e-fun f) ≡ θ (next (ret f))
fun-retract f =
p-fun' (transport (fix-eq Dyn') (e-fun f))
≡⟨ refl ⟩
p-fun' (transport (fix-eq Dyn') (transport (sym (fix-eq Dyn')) (arr (next f))))
≡⟨ (λ i → p-fun' (transportTransport⁻ (fix-eq Dyn') (arr (next f)) i)) ⟩
p-fun' (arr (next f)) ≡⟨ refl ⟩
θ (ret <$> next f) ≡⟨ refl ⟩
θ (next (ret f)) ∎
EP-fun : EP (Dyn -> L℧ Dyn) Dyn
EP-fun = record {
emb = e-fun;
proj = p-fun
;
retract = {!!} }
proj = p-fun
}
-- Lifting retractions to functions
module LiftRetraction
(
A A' B B' : Set
)
{
A A' B B' : Set
}
(epAA' : EP A A')
(epBB' : EP B B') where
e-lift :
(A → L℧ B) → (A' → L℧ B')
e-lift
h
a' =
bind (EP.proj
{!!}
a') λ a -> mapL (EP.emb
{!!}
) (
h
a)
e-lift
f
a' =
bind (EP.proj
epAA'
a') λ a -> mapL (EP.emb
epBB'
) (
f
a)
-- or equivalently:
-- mapL (EP.emb epBB') (bind (EP.proj epAA' a') h)
...
...
@@ -338,6 +351,19 @@ module LiftRetraction
EP-lift : {A A' B B' : Set} ->
EP A A' ->
EP B B' ->
EP (A -> L℧ B) (A' -> L℧ B')
EP-lift epAA' epBB' = record {
emb = e-lift;
proj = p-lift }
where open LiftRetraction epAA' epBB'
{-
...
...
@@ -348,16 +374,6 @@ L℧ X = record { X = L℧X ; ℧ = ℧ ; ℧⊥ = {!!} ; θ = record { f = θ
L℧X = L℧₀ (X .fst) , {!!}
-}
-- Plan:
-- 1. Define denotational semantics for gradual STLC and show soundness of term precision
-- 1a. Define interpretation of terms of gradual CBV cast calculus (STLC + casts)
-- i) Semantic domains
-- ii) Term syntax (intrinsically typed, de Bruijn)
-- iii) Denotation function
-- 1b. Soundness of term precision with equational theory only (no ordering)
-- The language supports Dyn, CBV functions, nat
-- | TODO:
-- | 1. monotone monad structure
-- | 2. strict functions
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment