Skip to content
Snippets Groups Projects
Commit 55b18bab authored by Eric Giovannini's avatar Eric Giovannini
Browse files

More properties of later

parent 0f3e073b
No related branches found
No related tags found
No related merge requests found
......@@ -70,6 +70,9 @@ path-x-f-next-x {k = k} {A = A} {f = f} = (fix f , fix-eq f) , unique
{!!} ≡⟨ {!!} ⟩
{!!} ≡⟨ {!!} ⟩
(cong f λ i -> λ t -> q i) ∎
eq' : PathP (λ i → q i ≡ f (next (q i))) (fix-eq f) p-h
eq' = compPathL→PathP {!!}
eq : PathP (λ i → q i ≡ f (next (q i))) (fix-eq f) p-h
eq = transport (sym (PathP≡doubleCompPathˡ q (fix-eq f) p-h (cong f (λ i -> λ t -> q i))))
......@@ -87,16 +90,38 @@ fixpoints-unique = {!!}
-- If we have an equality later, then this induces an equality now
eq▹ : {k : Clock} {ℓ : Level} {X : Type ℓ} ->
(x~ y~ : ▹ k , X) ->
▸ (λ t -> x~ t ≡ y~ t) -> x~ ≡ y~
eq▹ x~ y~ eq~ i t = eq~ t i
-- Dependent version:
eq▸ : {k : Clock} {ℓ : Level} {X : ▹ k , Type ℓ} ->
(x~ y~ : ▸ X) ->
▸ (λ t -> x~ t ≡ y~ t) -> x~ ≡ y~
eq▸ x~ y~ eq~ i t = eq~ t i
-- If we know that X is a prop later, then we can conclude that
-- ▹ X is a prop now.
-- Dependent version:
isProp▸ : {k : Clock} {ℓ : Level} {X : ▹ k , Type ℓ} ->
▸ (λ t -> isProp (X t)) -> isProp (▸ λ t -> X t)
isProp▸ H x~ y~ i t = H t (x~ t) (y~ t) i
-- If we know that X is a set later, then we can conclude that
-- ▹ X is a set now.
isSet▹ : {k : Clock} {ℓ : Level} {X : Type ℓ} ->
▹ k , (isSet X) -> isSet (▹ k , X)
isSet▹ H x~ y~ p1 p2 i j t =
H t (x~ t) (y~ t) (λ l -> p1 l t) (λ l -> p2 l t) i j
-- Dependent version
-- Dependent version of the above
isSet▸ : {k : Clock} {ℓ : Level} {X : ▹ k , Type ℓ} ->
▸ (λ t -> isSet (X t)) -> isSet (▸ λ t -> X t)
isSet▸ H x~ y~ p1 p2 i j t = H t (x~ t) (y~ t) (λ l -> p1 l t) (λ l -> p2 l t) i j
isSet▸ H x~ y~ p1 p2 i j t =
H t (x~ t) (y~ t) (λ l -> p1 l t) (λ l -> p2 l t) i j
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment