Skip to content
Snippets Groups Projects
Commit 2b99239d authored by Max New's avatar Max New
Browse files

Begin porting syntax to GTT and new Context rep

parent e24a9c26
No related branches found
No related tags found
No related merge requests found
......@@ -9,8 +9,6 @@ open import Common.Later hiding (next)
module Syntax.Types where
open import Cubical.Foundations.Prelude renaming (comp to compose)
open import Cubical.Data.Nat hiding (_·_) renaming (ℕ to Nat)
open import Cubical.Relation.Nullary
......@@ -20,12 +18,9 @@ open import Cubical.Foundations.Isomorphism
open import Cubical.Data.List
using (List ; length ; map ; _++_ ; cons-inj₁ ; cons-inj₂)
renaming ([] to · ; _∷_ to _::_)
open import Cubical.Data.Empty renaming (rec to exFalso)
import Syntax.DeBruijnCommon
open import Syntax.Context as Context
private
variable
......@@ -37,33 +32,27 @@ private
data Interval : Type where
l r : Interval
data IntExt : Type where
Int Ext : IntExt
data iCtx : Type where
Empty : iCtx
Full : iCtx
private
variable
α : IntExt
data Ty : iCtx -> Type
data Ty : {α : IntExt} -> iCtx -> Type
ty-endpt : Interval -> Ty Full -> Ty Empty
ty-endpt : ∀ {α} -> Interval -> Ty {α} Full -> Ty {α} Empty
_⊑_ : Ty Empty -> Ty Empty -> Type
A ⊑ B = Σ[ c ∈ Ty Full ] ((ty-endpt l c ≡ A) × (ty-endpt r c ≡ B))
data Ty where
nat : ∀ {α Ξ} -> Ty {α} Ξ
dyn : ∀ {α Ξ} -> Ty {α} Ξ
_⇀_ : ∀ {α Ξ} -> Ty {α} Ξ -> Ty {α} Ξ -> Ty {α} Ξ
inj-nat : ∀ {α} -> Ty {α} Full
inj-arr : ∀ {α} -> Ty {α} Full
comp : ∀ {α} -> (c : Ty {α} Full) -> (d : Ty {α} Full) ->
(ty-endpt l c ≡ ty-endpt r d) -> Ty {α} Full
-- order-set : isSet (Ty Full)
▹ : ∀ {Ξ} -> Ty {Int} Ξ -> Ty {Int} Ξ
nat : ∀ {Ξ} -> Ty Ξ
dyn : ∀ {Ξ} -> Ty Ξ
_⇀_ : ∀ {Ξ} -> Ty Ξ -> Ty Ξ -> Ty Ξ
inj-nat : Ty Full
inj-arr : Ty Full
comp : ∀ (c : Ty Full) -> (d : Ty Full) ->
(ty-endpt l c ≡ ty-endpt r d) -> Ty Full
-- isProp⊑ : ∀ {A B : Ty }
ty-endpt p nat = nat
ty-endpt p dyn = dyn
......@@ -74,26 +63,27 @@ ty-endpt l inj-arr = (dyn ⇀ dyn) -- inj-arr : (dyn -> dyn) ⊑ dyn
ty-endpt r inj-arr = dyn
ty-endpt l (comp c d _) = ty-endpt l d
ty-endpt r (comp c d _) = ty-endpt r c
ty-endpt p (▹ A) = ▹ (ty-endpt p A)
_[_/i] : ∀ {α} -> Ty {α} Full -> Interval -> Ty {α} Empty
_[_/i] : Ty Full -> Interval -> Ty Empty
c [ p /i] = ty-endpt p c
ty-left : ∀ {α} -> Ty {α} Full -> Ty Empty
ty-left : Ty Full -> Ty Empty
ty-left = ty-endpt l
ty-right : ∀ {α} -> Ty {α} Full -> Ty Empty
ty-right : Ty Full -> Ty Empty
ty-right = ty-endpt r
CompTyRel : ∀ {α} -> Type
CompTyRel {α} = Σ (Ty {α} Full × Ty Full)
CompTyRel : Type
CompTyRel = Σ (Ty Full × Ty Full)
λ { (c' , c) -> (ty-left c') ≡ (ty-right c) }
CompTyRel-comp : ∀ {α} -> CompTyRel {α} -> Ty Full
CompTyRel-comp : CompTyRel -> Ty Full
CompTyRel-comp ((c' , c) , pf) = comp c' c pf
CompTyRel-endpt : ∀ {α} -> Interval -> CompTyRel {α} -> Ty Full
CompTyRel-endpt : Interval -> CompTyRel -> Ty Full
CompTyRel-endpt l ((c , d) , _) = c
CompTyRel-endpt r ((c , d) , _) = d
......@@ -101,69 +91,57 @@ CompTyRel-endpt r ((c , d) , _) = d
-- Given a "normal" type A, view it as its reflexivity precision derivation c : A ⊑ A.
ty-refl : Ty {α} Empty -> Ty {α} Full
ty-refl : Ty Empty -> Ty Full
ty-refl nat = nat
ty-refl dyn = dyn
ty-refl (Ai ⇀ Ao) = ty-refl Ai ⇀ ty-refl Ao
ty-refl (▹ A) = ▹ (ty-refl A)
ty-endpt-refl : {A : Ty {α} Empty} -> (p : Interval) -> ty-endpt p (ty-refl A) ≡ A
ty-endpt-refl {_} {nat} p = refl
ty-endpt-refl {_} {dyn} p = refl
ty-endpt-refl {_} {A ⇀ B} p = cong₂ _⇀_ (ty-endpt-refl p) (ty-endpt-refl p)
ty-endpt-refl {_} {▹ A} p = cong ▹ (ty-endpt-refl p)
_⊑_ : Ty {α} Empty -> Ty Empty -> Type
A ⊑ B = Σ[ c ∈ Ty Full ] ((ty-left c ≡ A) × (ty-right c ≡ B))
ty-endpt-refl : {A : Ty Empty} -> (p : Interval) -> ty-endpt p (ty-refl A) ≡ A
ty-endpt-refl {nat} p = refl
ty-endpt-refl {dyn} p = refl
ty-endpt-refl {A ⇀ B} p = cong₂ _⇀_ (ty-endpt-refl p) (ty-endpt-refl p)
-- ############### Contexts ###############
open Ctx
Ctx : ∀ {α : IntExt} -> iCtx -> Type
Ctx {α} Ξ = List (Ty {α} Ξ)
TyCtx : iCtx → Type (ℓ-suc ℓ-zero)
TyCtx Ξ = Ctx (Ty Ξ)
-- Endpoints of a full context
ctx-endpt : (p : Interval) -> Ctx {α} Full -> Ctx Empty
ctx-endpt p = map (ty-endpt p)
CompCtx : (Δ Γ : Ctx {α} Full) -> (pf : ctx-endpt l Δ ≡ ctx-endpt r Γ) ->
Ctx {α} Full
CompCtx Δ Γ pf = {!!}
ctx-endpt : (p : Interval) -> TyCtx Full -> TyCtx Empty
ctx-endpt p = Context.map (ty-endpt p)
CompCtx : (Δ Γ : TyCtx Full)
-> (pf : ctx-endpt l Δ ≡ ctx-endpt r Γ)
-> TyCtx Full
CompCtx Δ Γ pf .var = Δ .var
CompCtx Δ Γ pf .isFinSetVar = Δ .isFinSetVar
CompCtx Δ Γ pf .el x = comp (Δ .el x)
(Γ .el (transport (cong var pf) x))
λ i → pf i .el (transport-filler (cong var pf) x i)
-- "Contains" relation stating that a context Γ contains a type T
data _∋_ : ∀ {Ξ} -> Ctx {α} Ξ -> Ty {α} Ξ -> Set where
vz : ∀ {Ξ Γ S} -> _∋_ {α} {Ξ} (S :: Γ) S
vs : ∀ {Ξ Γ S T} (x : _∋_ {α} {Ξ} Γ T) -> (S :: Γ ∋ T)
-- -- "Contains" relation stating that a context Γ contains a type T
-- data _∋_ : ∀ {Ξ} -> Ctx Ξ -> Ty Ξ -> Set where
-- vz : ∀ {Ξ Γ S} -> _∋_ {Ξ} (S :: Γ) S
-- vs : ∀ {Ξ Γ S T} (x : _∋_ {Ξ} Γ T) -> (S :: Γ ∋ T)
infix 4 _∋_
-- infix 4 _∋_
∋-ctx-endpt : {Γ : Ctx {α} Full} {c : Ty Full} -> (p : Interval) ->
(Γ ∋ c) -> ((ctx-endpt p Γ) ∋ (ty-endpt p c))
∋-ctx-endpt p vz = vz
∋-ctx-endpt p (vs Γ∋c) = vs (∋-ctx-endpt p Γ∋c)
-- ∋-ctx-endpt : {Γ : Ctx Full} {c : Ty Full} -> (p : Interval) ->
-- (Γ ∋ c) -> ((ctx-endpt p Γ) ∋ (ty-endpt p c))
-- ∋-ctx-endpt p vz = vz
-- ∋-ctx-endpt p (vs Γ∋c) = vs (∋-ctx-endpt p Γ∋c)
-- View a "normal" typing context Γ as a type precision context where the derivation
-- corresponding to each type A in Γ is just the reflexivity precision derivation A ⊑ A.
ctx-refl : Ctx {α} Empty -> Ctx Full
ctx-refl = map ty-refl
--ctx-refl · = ·
--ctx-refl (A :: Γ) = ty-refl A :: ctx-refl Γ
ctx-refl : TyCtx Empty -> TyCtx Full
ctx-refl = Context.map ty-refl
-- For a given typing context, the endpoints of the corresponding reflexivity precision
-- context are the typing context itself.
ctx-endpt-refl : {Γ : Ctx {α} Empty} -> (p : Interval) -> ctx-endpt p (ctx-refl Γ) ≡ Γ
ctx-endpt-refl {_} {·} p = refl
ctx-endpt-refl {_} {A :: Γ} p = cong₂ _::_ (ty-endpt-refl p) (ctx-endpt-refl p)
ctx-endpt-refl : {Γ : TyCtx Empty} -> (p : Interval) -> ctx-endpt p (ctx-refl Γ) ≡ Γ
ctx-endpt-refl {Γ} p = Ctx≡ _ _ refl (funExt λ x → ty-endpt-refl {A = Γ .el x} p)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment