Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
sgdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
gradual-typing
sgdt
Commits
2b99239d
Commit
2b99239d
authored
1 year ago
by
Max New
Browse files
Options
Downloads
Patches
Plain Diff
Begin porting syntax to GTT and new Context rep
parent
e24a9c26
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
formalizations/guarded-cubical/Syntax/Types.agda
+53
-75
53 additions, 75 deletions
formalizations/guarded-cubical/Syntax/Types.agda
with
53 additions
and
75 deletions
formalizations/guarded-cubical/Syntax/Types.agda
+
53
−
75
View file @
2b99239d
...
...
@@ -9,8 +9,6 @@ open import Common.Later hiding (next)
module Syntax.Types where
open import Cubical.Foundations.Prelude renaming (comp to compose)
open import Cubical.Data.Nat hiding (_·_) renaming (ℕ to Nat)
open import Cubical.Relation.Nullary
...
...
@@ -20,12 +18,9 @@ open import Cubical.Foundations.Isomorphism
open import Cubical.Data.List
using (List ; length ; map ; _++_ ; cons-inj₁ ; cons-inj₂)
renaming ([] to · ; _∷_ to _::_)
open import Cubical.Data.Empty renaming (rec to exFalso)
import Syntax.DeBruijnCommon
open import Syntax.Context as Context
private
variable
...
...
@@ -37,33 +32,27 @@ private
data Interval : Type where
l r : Interval
data IntExt : Type where
Int Ext : IntExt
data iCtx : Type where
Empty : iCtx
Full : iCtx
private
variable
α : IntExt
data Ty : iCtx -> Type
data Ty : {α : IntExt} -> iCtx -> Type
ty-endpt : Interval -> Ty Full -> Ty Empty
ty-endpt : ∀ {α} -> Interval -> Ty {α} Full -> Ty {α} Empty
_⊑_ : Ty Empty -> Ty Empty -> Type
A ⊑ B = Σ[ c ∈ Ty Full ] ((ty-endpt l c ≡ A) × (ty-endpt r c ≡ B))
data Ty where
nat : ∀ {α Ξ} -> Ty {α} Ξ
dyn : ∀ {α Ξ} -> Ty {α} Ξ
_⇀_ : ∀ {α Ξ} -> Ty {α} Ξ -> Ty {α} Ξ -> Ty {α} Ξ
inj-nat : ∀ {α} -> Ty {α} Full
inj-arr : ∀ {α} -> Ty {α} Full
comp : ∀ {α} -> (c : Ty {α} Full) -> (d : Ty {α} Full) ->
(ty-endpt l c ≡ ty-endpt r d) -> Ty {α} Full
-- order-set : isSet (Ty Full)
▹ : ∀ {Ξ} -> Ty {Int} Ξ -> Ty {Int} Ξ
nat : ∀ {Ξ} -> Ty Ξ
dyn : ∀ {Ξ} -> Ty Ξ
_⇀_ : ∀ {Ξ} -> Ty Ξ -> Ty Ξ -> Ty Ξ
inj-nat : Ty Full
inj-arr : Ty Full
comp : ∀ (c : Ty Full) -> (d : Ty Full) ->
(ty-endpt l c ≡ ty-endpt r d) -> Ty Full
-- isProp⊑ : ∀ {A B : Ty }
ty-endpt p nat = nat
ty-endpt p dyn = dyn
...
...
@@ -74,26 +63,27 @@ ty-endpt l inj-arr = (dyn ⇀ dyn) -- inj-arr : (dyn -> dyn) ⊑ dyn
ty-endpt r inj-arr = dyn
ty-endpt l (comp c d _) = ty-endpt l d
ty-endpt r (comp c d _) = ty-endpt r c
ty-endpt p (▹ A) = ▹ (ty-endpt p A)
_[_/i] : ∀ {α} -> Ty {α} Full -> Interval -> Ty {α} Empty
_[_/i] : Ty Full -> Interval -> Ty Empty
c [ p /i] = ty-endpt p c
ty-left :
∀ {α} -> Ty {α}
Full -> Ty Empty
ty-left :
Ty
Full -> Ty Empty
ty-left = ty-endpt l
ty-right :
∀ {α} -> Ty {α}
Full -> Ty Empty
ty-right :
Ty
Full -> Ty Empty
ty-right = ty-endpt r
CompTyRel :
∀ {α} ->
Type
CompTyRel
{α}
= Σ (Ty
{α}
Full × Ty Full)
CompTyRel : Type
CompTyRel = Σ (Ty Full × Ty Full)
λ { (c' , c) -> (ty-left c') ≡ (ty-right c) }
CompTyRel-comp :
∀ {α} ->
CompTyRel
{α}
-> Ty Full
CompTyRel-comp : CompTyRel -> Ty Full
CompTyRel-comp ((c' , c) , pf) = comp c' c pf
CompTyRel-endpt :
∀ {α} ->
Interval -> CompTyRel
{α}
-> Ty Full
CompTyRel-endpt : Interval -> CompTyRel -> Ty Full
CompTyRel-endpt l ((c , d) , _) = c
CompTyRel-endpt r ((c , d) , _) = d
...
...
@@ -101,69 +91,57 @@ CompTyRel-endpt r ((c , d) , _) = d
-- Given a "normal" type A, view it as its reflexivity precision derivation c : A ⊑ A.
ty-refl : Ty
{α}
Empty -> Ty
{α}
Full
ty-refl : Ty Empty -> Ty Full
ty-refl nat = nat
ty-refl dyn = dyn
ty-refl (Ai ⇀ Ao) = ty-refl Ai ⇀ ty-refl Ao
ty-refl (▹ A) = ▹ (ty-refl A)
ty-endpt-refl : {A : Ty {α} Empty} -> (p : Interval) -> ty-endpt p (ty-refl A) ≡ A
ty-endpt-refl {_} {nat} p = refl
ty-endpt-refl {_} {dyn} p = refl
ty-endpt-refl {_} {A ⇀ B} p = cong₂ _⇀_ (ty-endpt-refl p) (ty-endpt-refl p)
ty-endpt-refl {_} {▹ A} p = cong ▹ (ty-endpt-refl p)
_⊑_ : Ty {α} Empty -> Ty Empty -> Type
A ⊑ B = Σ[ c ∈ Ty Full ] ((ty-left c ≡ A) × (ty-right c ≡ B))
ty-endpt-refl : {A : Ty Empty} -> (p : Interval) -> ty-endpt p (ty-refl A) ≡ A
ty-endpt-refl {nat} p = refl
ty-endpt-refl {dyn} p = refl
ty-endpt-refl {A ⇀ B} p = cong₂ _⇀_ (ty-endpt-refl p) (ty-endpt-refl p)
-- ############### Contexts ###############
open Ctx
Ctx : ∀ {α : IntExt} -> iCtx -> Type
Ctx {α} Ξ = List (Ty {α} Ξ)
TyCtx : iCtx → Type (ℓ-suc ℓ-zero)
TyCtx Ξ = Ctx (Ty Ξ)
-- Endpoints of a full context
ctx-endpt : (p : Interval) -> Ctx {α} Full -> Ctx Empty
ctx-endpt p = map (ty-endpt p)
CompCtx : (Δ Γ : Ctx {α} Full) -> (pf : ctx-endpt l Δ ≡ ctx-endpt r Γ) ->
Ctx {α} Full
CompCtx Δ Γ pf = {!!}
ctx-endpt : (p : Interval) -> TyCtx Full -> TyCtx Empty
ctx-endpt p = Context.map (ty-endpt p)
CompCtx : (Δ Γ : TyCtx Full)
-> (pf : ctx-endpt l Δ ≡ ctx-endpt r Γ)
-> TyCtx Full
CompCtx Δ Γ pf .var = Δ .var
CompCtx Δ Γ pf .isFinSetVar = Δ .isFinSetVar
CompCtx Δ Γ pf .el x = comp (Δ .el x)
(Γ .el (transport (cong var pf) x))
λ i → pf i .el (transport-filler (cong var pf) x i)
-- "Contains" relation stating that a context Γ contains a type T
data _∋_ : ∀ {Ξ} -> Ctx
{α}
Ξ -> Ty
{α}
Ξ -> Set where
vz : ∀ {Ξ Γ S} -> _∋_
{α}
{Ξ} (S :: Γ) S
vs : ∀ {Ξ Γ S T} (x : _∋_
{α}
{Ξ} Γ T) -> (S :: Γ ∋ T)
--
-- "Contains" relation stating that a context Γ contains a type T
--
data _∋_ : ∀ {Ξ} -> Ctx Ξ -> Ty Ξ -> Set where
--
vz : ∀ {Ξ Γ S} -> _∋_ {Ξ} (S :: Γ) S
--
vs : ∀ {Ξ Γ S T} (x : _∋_ {Ξ} Γ T) -> (S :: Γ ∋ T)
infix 4 _∋_
--
infix 4 _∋_
∋-ctx-endpt : {Γ : Ctx
{α}
Full} {c : Ty Full} -> (p : Interval) ->
(Γ ∋ c) -> ((ctx-endpt p Γ) ∋ (ty-endpt p c))
∋-ctx-endpt p vz = vz
∋-ctx-endpt p (vs Γ∋c) = vs (∋-ctx-endpt p Γ∋c)
--
∋-ctx-endpt : {Γ : Ctx Full} {c : Ty Full} -> (p : Interval) ->
--
(Γ ∋ c) -> ((ctx-endpt p Γ) ∋ (ty-endpt p c))
--
∋-ctx-endpt p vz = vz
--
∋-ctx-endpt p (vs Γ∋c) = vs (∋-ctx-endpt p Γ∋c)
-- View a "normal" typing context Γ as a type precision context where the derivation
-- corresponding to each type A in Γ is just the reflexivity precision derivation A ⊑ A.
ctx-refl : Ctx {α} Empty -> Ctx Full
ctx-refl = map ty-refl
--ctx-refl · = ·
--ctx-refl (A :: Γ) = ty-refl A :: ctx-refl Γ
ctx-refl : TyCtx Empty -> TyCtx Full
ctx-refl = Context.map ty-refl
-- For a given typing context, the endpoints of the corresponding reflexivity precision
-- context are the typing context itself.
ctx-endpt-refl : {Γ : Ctx {α} Empty} -> (p : Interval) -> ctx-endpt p (ctx-refl Γ) ≡ Γ
ctx-endpt-refl {_} {·} p = refl
ctx-endpt-refl {_} {A :: Γ} p = cong₂ _::_ (ty-endpt-refl p) (ctx-endpt-refl p)
ctx-endpt-refl : {Γ : TyCtx Empty} -> (p : Interval) -> ctx-endpt p (ctx-refl Γ) ≡ Γ
ctx-endpt-refl {Γ} p = Ctx≡ _ _ refl (funExt λ x → ty-endpt-refl {A = Γ .el x} p)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment